fix RM accuracy

Former-commit-id: 7826a8ca77
This commit is contained in:
hiyouga
2023-06-28 01:40:13 +08:00
parent 204541b56c
commit c3cd2067b2

View File

@@ -13,8 +13,7 @@ logger = get_logger(__name__)
def compute_accuracy(eval_preds: Sequence[Union[np.ndarray, Tuple[np.ndarray]]]) -> Dict[str, float]:
preds, _ = eval_preds
preds = np.array(preds)
return {"accuracy": (preds[:, 0] > preds[:, 1]).sum() / len(preds)}
return {"accuracy": (preds[0] > preds[1]).sum() / len(preds[0])}
class PairwiseDataCollatorWithPadding(DynamicDataCollatorWithPadding):
@@ -49,9 +48,13 @@ class PairwisePeftTrainer(PeftTrainer):
We use score on the EOS token to represent reward of the whole sentence.
Subclass and override to inject custom behavior. It should not be directly used by external scripts.
Note that the first element will be removed from the output tuple.
See: https://github.com/huggingface/transformers/blob/v4.30.2/src/transformers/trainer.py#L3509
"""
batch_size = inputs["input_ids"].size(0) // 2
_, _, values = model(**inputs)
r_accept, r_reject = values[:, -1].split(batch_size, dim=0)
loss = -torch.log(torch.sigmoid(r_accept - r_reject)).mean()
return (loss, torch.stack((r_accept, r_reject), dim=-1)) if return_outputs else loss
return (loss, [loss, r_accept, r_reject]) if return_outputs else loss