mirror of
https://github.com/hiyouga/LLaMA-Factory.git
synced 2025-12-15 03:10:35 +08:00
update readme
This commit is contained in:
26
README.md
26
README.md
@@ -76,10 +76,10 @@ Compared to ChatGLM's [P-Tuning](https://github.com/THUDM/ChatGLM2-6B/tree/main/
|
||||
|
||||
[24/03/07] We supported gradient low-rank projection (**[GaLore](https://arxiv.org/abs/2403.03507)**) algorithm. See `examples/extras/galore` for usage.
|
||||
|
||||
[24/03/07] We integrated **[vLLM](https://github.com/vllm-project/vllm)** for faster and concurrent inference. Try `--infer_backend vllm` to enjoy **270%** inference speed. (LoRA is not yet supported, merge it first.)
|
||||
|
||||
<details><summary>Full Changelog</summary>
|
||||
|
||||
[24/03/07] We integrated **[vLLM](https://github.com/vllm-project/vllm)** for faster and concurrent inference. Try `--infer_backend vllm` to enjoy **270%** inference speed. (LoRA is not yet supported, merge it first.)
|
||||
|
||||
[24/02/28] We supported weight-decomposed LoRA (**[DoRA](https://arxiv.org/abs/2402.09353)**). Try `--use_dora` to activate DoRA training.
|
||||
|
||||
[24/02/15] We supported **block expansion** proposed by [LLaMA Pro](https://github.com/TencentARC/LLaMA-Pro). See `examples/extras/llama_pro` for usage.
|
||||
@@ -586,7 +586,7 @@ CUDA_VISIBLE_DEVICES= python src/export_model.py \
|
||||
> [!TIP]
|
||||
> Use `--model_name_or_path path_to_export` solely to use the exported model.
|
||||
>
|
||||
> Use `--export_quantization_bit 4` and `--export_quantization_dataset data/c4_demo.json` to quantize the model with AutoGPTQ after merging the LoRA weights.
|
||||
> Use `CUDA_VISIBLE_DEVICES=0`, `--export_quantization_bit 4` and `--export_quantization_dataset data/c4_demo.json` to quantize the model with AutoGPTQ after merging the LoRA weights.
|
||||
|
||||
### Inference with OpenAI-style API
|
||||
|
||||
@@ -662,19 +662,23 @@ CUDA_VISIBLE_DEVICES=0 python src/train_bash.py \
|
||||
|
||||
### Dockerize Training
|
||||
|
||||
#### Get ready
|
||||
|
||||
Necessary dockerized environment is needed, such as Docker or Docker Compose.
|
||||
|
||||
#### Docker support
|
||||
#### Use Docker
|
||||
|
||||
```bash
|
||||
docker build -f ./Dockerfile -t llama-factory:latest .
|
||||
|
||||
docker run --gpus=all -v ./hf_cache:/root/.cache/huggingface/ -v ./data:/app/data -v ./output:/app/output -p 7860:7860 --shm-size 16G --name llama_factory -d llama-factory:latest
|
||||
docker run --gpus=all \
|
||||
-v ./hf_cache:/root/.cache/huggingface/ \
|
||||
-v ./data:/app/data \
|
||||
-v ./output:/app/output \
|
||||
-e CUDA_VISIBLE_DEVICES=0 \
|
||||
-p 7860:7860 \
|
||||
--shm-size 16G \
|
||||
--name llama_factory \
|
||||
-d llama-factory:latest
|
||||
```
|
||||
|
||||
#### Docker Compose support
|
||||
#### Use Docker Compose
|
||||
|
||||
```bash
|
||||
docker compose -f ./docker-compose.yml up -d
|
||||
@@ -682,7 +686,7 @@ docker compose -f ./docker-compose.yml up -d
|
||||
|
||||
> [!TIP]
|
||||
> Details about volume:
|
||||
> * hf_cache: Utilize Huggingface cache on the host machine. Reassignable if a cache already exists in a different directory.
|
||||
> * hf_cache: Utilize Hugging Face cache on the host machine. Reassignable if a cache already exists in a different directory.
|
||||
> * data: Place datasets on this dir of the host machine so that they can be selected on LLaMA Board GUI.
|
||||
> * output: Set export dir to this location so that the merged result can be accessed directly on the host machine.
|
||||
|
||||
|
||||
Reference in New Issue
Block a user