mirror of
https://github.com/hiyouga/LLaMA-Factory.git
synced 2025-12-20 13:50:35 +08:00
allow non-packing pretraining
This commit is contained in:
@@ -1,4 +1,4 @@
|
||||
from typing import TYPE_CHECKING, Dict, Optional, Tuple
|
||||
from typing import TYPE_CHECKING, Dict, Tuple
|
||||
|
||||
import gradio as gr
|
||||
|
||||
@@ -14,7 +14,7 @@ if TYPE_CHECKING:
|
||||
|
||||
|
||||
def create_chat_box(
|
||||
engine: "Engine", visible: Optional[bool] = False
|
||||
engine: "Engine", visible: bool = False
|
||||
) -> Tuple["Block", "Component", "Component", Dict[str, "Component"]]:
|
||||
with gr.Box(visible=visible) as chat_box:
|
||||
chatbot = gr.Chatbot()
|
||||
|
||||
@@ -1,4 +1,4 @@
|
||||
from typing import TYPE_CHECKING, Dict
|
||||
from typing import TYPE_CHECKING, Dict, Tuple
|
||||
|
||||
import gradio as gr
|
||||
|
||||
@@ -12,7 +12,7 @@ if TYPE_CHECKING:
|
||||
from gradio.components import Component
|
||||
|
||||
|
||||
def create_top() -> Dict[str, "Component"]:
|
||||
def create_top() -> Tuple["gr.Dropdown", Dict[str, "Component"]]:
|
||||
available_models = list(SUPPORTED_MODELS.keys()) + ["Custom"]
|
||||
|
||||
with gr.Row():
|
||||
@@ -44,7 +44,7 @@ def create_top() -> Dict[str, "Component"]:
|
||||
|
||||
refresh_btn.click(list_adapters, [model_name, finetuning_type], [adapter_path], queue=False)
|
||||
|
||||
return dict(
|
||||
return lang, dict(
|
||||
lang=lang,
|
||||
model_name=model_name,
|
||||
model_path=model_path,
|
||||
|
||||
@@ -4,7 +4,7 @@ import gradio as gr
|
||||
from transformers.trainer_utils import SchedulerType
|
||||
|
||||
from ...extras.constants import TRAINING_STAGES
|
||||
from ..common import DEFAULT_DATA_DIR, list_adapters, list_dataset
|
||||
from ..common import DEFAULT_DATA_DIR, autoset_packing, list_adapters, list_dataset
|
||||
from ..components.data import create_preview_box
|
||||
from ..utils import gen_plot
|
||||
|
||||
@@ -78,7 +78,7 @@ def create_train_tab(engine: "Engine") -> Dict[str, "Component"]:
|
||||
|
||||
with gr.Row():
|
||||
resize_vocab = gr.Checkbox()
|
||||
sft_packing = gr.Checkbox()
|
||||
packing = gr.Checkbox()
|
||||
upcast_layernorm = gr.Checkbox()
|
||||
use_llama_pro = gr.Checkbox()
|
||||
shift_attn = gr.Checkbox()
|
||||
@@ -91,7 +91,7 @@ def create_train_tab(engine: "Engine") -> Dict[str, "Component"]:
|
||||
neftune_alpha,
|
||||
optim,
|
||||
resize_vocab,
|
||||
sft_packing,
|
||||
packing,
|
||||
upcast_layernorm,
|
||||
use_llama_pro,
|
||||
shift_attn,
|
||||
@@ -106,7 +106,7 @@ def create_train_tab(engine: "Engine") -> Dict[str, "Component"]:
|
||||
neftune_alpha=neftune_alpha,
|
||||
optim=optim,
|
||||
resize_vocab=resize_vocab,
|
||||
sft_packing=sft_packing,
|
||||
packing=packing,
|
||||
upcast_layernorm=upcast_layernorm,
|
||||
use_llama_pro=use_llama_pro,
|
||||
shift_attn=shift_attn,
|
||||
@@ -166,7 +166,7 @@ def create_train_tab(engine: "Engine") -> Dict[str, "Component"]:
|
||||
[engine.manager.get_elem_by_name("top.model_name"), engine.manager.get_elem_by_name("top.finetuning_type")],
|
||||
[reward_model],
|
||||
queue=False,
|
||||
)
|
||||
).then(autoset_packing, [training_stage], [packing], queue=False)
|
||||
|
||||
input_elems.update({dpo_beta, dpo_ftx, reward_model})
|
||||
elem_dict.update(dict(rlhf_tab=rlhf_tab, dpo_beta=dpo_beta, dpo_ftx=dpo_ftx, reward_model=reward_model))
|
||||
|
||||
Reference in New Issue
Block a user