diff --git a/README.md b/README.md index 32150a7a..e98b18b0 100644 --- a/README.md +++ b/README.md @@ -261,12 +261,14 @@ cd LLaMA-Factory pip install -r requirements.txt ``` -If you want to enable the quantized LoRA (QLoRA) on the Windows platform, you will be required to install a pre-built version of `bitsandbytes` library, which supports CUDA 11.1 to 12.1. +If you want to enable the quantized LoRA (QLoRA) on the Windows platform, you will be required to install a pre-built version of `bitsandbytes` library, which supports CUDA 11.1 to 12.2. ```bash -pip install https://github.com/jllllll/bitsandbytes-windows-webui/releases/download/wheels/bitsandbytes-0.39.1-py3-none-win_amd64.whl +pip install https://github.com/jllllll/bitsandbytes-windows-webui/releases/download/wheels/bitsandbytes-0.40.0-py3-none-win_amd64.whl ``` +To enable FlashAttention-2 on the Windows platform, you need to install the precompiled `flash-attn` library, which supports CUDA 12.1 to 12.2. Please download the corresponding version from [flash-attention](https://github.com/bdashore3/flash-attention/releases) based on your requirements. + ### Use ModelScope Hub (optional) If you have trouble with downloading models and datasets from Hugging Face, you can use LLaMA-Factory together with ModelScope in the following manner. diff --git a/README_zh.md b/README_zh.md index f99f91bc..e00ff5a3 100644 --- a/README_zh.md +++ b/README_zh.md @@ -261,12 +261,14 @@ cd LLaMA-Factory pip install -r requirements.txt ``` -如果要在 Windows 平台上开启量化 LoRA(QLoRA),需要安装预编译的 `bitsandbytes` 库, 支持 CUDA 11.1 到 12.1. +如果要在 Windows 平台上开启量化 LoRA(QLoRA),需要安装预编译的 `bitsandbytes` 库, 支持 CUDA 11.1 到 12.2。 ```bash -pip install https://github.com/jllllll/bitsandbytes-windows-webui/releases/download/wheels/bitsandbytes-0.39.1-py3-none-win_amd64.whl +pip install https://github.com/jllllll/bitsandbytes-windows-webui/releases/download/wheels/bitsandbytes-0.40.0-py3-none-win_amd64.whl ``` +如果要在 Windows 平台上开启 FlashAttention-2,需要安装预编译的 `flash-attn` 库,支持 CUDA 12.1 到 12.2,请根据需求到 [flash-attention](https://github.com/bdashore3/flash-attention/releases) 下载对应版本安装。 + ### 使用魔搭社区(可跳过) 如果您在 Hugging Face 模型和数据集的下载中遇到了问题,可以通过下述方法使用魔搭社区。