mirror of
https://github.com/hiyouga/LLaMA-Factory.git
synced 2025-08-23 22:32:54 +08:00
create chat model
Former-commit-id: 657cf0f55a7f0886bc837bdd44528971dc5e5caa
This commit is contained in:
parent
8ba0996a53
commit
b8b38a9ade
@ -3,7 +3,6 @@
|
|||||||
# Usage: python api_demo.py --model_name_or_path path_to_model --checkpoint_dir path_to_checkpoint
|
# Usage: python api_demo.py --model_name_or_path path_to_model --checkpoint_dir path_to_checkpoint
|
||||||
# Visit http://localhost:8000/docs for document.
|
# Visit http://localhost:8000/docs for document.
|
||||||
|
|
||||||
|
|
||||||
import uvicorn
|
import uvicorn
|
||||||
|
|
||||||
from llmtuner import create_app
|
from llmtuner import create_app
|
||||||
|
@ -2,46 +2,11 @@
|
|||||||
# Implements stream chat in command line for fine-tuned models.
|
# Implements stream chat in command line for fine-tuned models.
|
||||||
# Usage: python cli_demo.py --model_name_or_path path_to_model --checkpoint_dir path_to_checkpoint
|
# Usage: python cli_demo.py --model_name_or_path path_to_model --checkpoint_dir path_to_checkpoint
|
||||||
|
|
||||||
from threading import Thread
|
from llmtuner import ChatModel, get_infer_args
|
||||||
from transformers import TextIteratorStreamer
|
|
||||||
|
|
||||||
from llmtuner import Template, get_infer_args, load_model_and_tokenizer, get_logits_processor
|
|
||||||
|
|
||||||
|
|
||||||
def main():
|
def main():
|
||||||
model_args, data_args, finetuning_args, generating_args = get_infer_args()
|
chat_model = ChatModel(*get_infer_args())
|
||||||
model, tokenizer = load_model_and_tokenizer(model_args, finetuning_args)
|
|
||||||
|
|
||||||
prompt_template = Template(data_args.prompt_template)
|
|
||||||
source_prefix = data_args.source_prefix if data_args.source_prefix else ""
|
|
||||||
|
|
||||||
def predict_and_print(query, history: list) -> list:
|
|
||||||
input_ids = tokenizer([prompt_template.get_prompt(query, history, source_prefix)], return_tensors="pt")["input_ids"]
|
|
||||||
input_ids = input_ids.to(model.device)
|
|
||||||
|
|
||||||
streamer = TextIteratorStreamer(tokenizer, timeout=60.0, skip_prompt=True, skip_special_tokens=True)
|
|
||||||
|
|
||||||
gen_kwargs = generating_args.to_dict()
|
|
||||||
gen_kwargs.update({
|
|
||||||
"input_ids": input_ids,
|
|
||||||
"logits_processor": get_logits_processor(),
|
|
||||||
"streamer": streamer
|
|
||||||
})
|
|
||||||
|
|
||||||
thread = Thread(target=model.generate, kwargs=gen_kwargs)
|
|
||||||
thread.start()
|
|
||||||
|
|
||||||
print("Assistant: ", end="", flush=True)
|
|
||||||
|
|
||||||
response = ""
|
|
||||||
for new_text in streamer:
|
|
||||||
print(new_text, end="", flush=True)
|
|
||||||
response += new_text
|
|
||||||
print()
|
|
||||||
|
|
||||||
history = history + [(query, response)]
|
|
||||||
return history
|
|
||||||
|
|
||||||
history = []
|
history = []
|
||||||
print("Welcome to the CLI application, use `clear` to remove the history, use `exit` to exit the application.")
|
print("Welcome to the CLI application, use `clear` to remove the history, use `exit` to exit the application.")
|
||||||
|
|
||||||
@ -62,7 +27,15 @@ def main():
|
|||||||
print("History has been removed.")
|
print("History has been removed.")
|
||||||
continue
|
continue
|
||||||
|
|
||||||
history = predict_and_print(query, history)
|
print("Assistant: ", end="", flush=True)
|
||||||
|
|
||||||
|
response = ""
|
||||||
|
for new_text in chat_model.stream_chat(query, history):
|
||||||
|
print(new_text, end="", flush=True)
|
||||||
|
response += new_text
|
||||||
|
print()
|
||||||
|
|
||||||
|
history = history + [(query, response)]
|
||||||
|
|
||||||
|
|
||||||
if __name__ == "__main__":
|
if __name__ == "__main__":
|
||||||
|
@ -1,6 +1,5 @@
|
|||||||
from llmtuner.api import create_app
|
from llmtuner.api import create_app
|
||||||
from llmtuner.extras.misc import get_logits_processor
|
from llmtuner.chat import ChatModel
|
||||||
from llmtuner.extras.template import Template
|
|
||||||
from llmtuner.tuner import get_train_args, get_infer_args, load_model_and_tokenizer, run_pt, run_sft, run_rm, run_ppo
|
from llmtuner.tuner import get_train_args, get_infer_args, load_model_and_tokenizer, run_pt, run_sft, run_rm, run_ppo
|
||||||
|
|
||||||
|
|
||||||
|
@ -1,15 +1,13 @@
|
|||||||
import uvicorn
|
import uvicorn
|
||||||
from threading import Thread
|
|
||||||
from fastapi import FastAPI, HTTPException
|
from fastapi import FastAPI, HTTPException
|
||||||
from fastapi.middleware.cors import CORSMiddleware
|
from fastapi.middleware.cors import CORSMiddleware
|
||||||
from transformers import TextIteratorStreamer
|
|
||||||
from contextlib import asynccontextmanager
|
from contextlib import asynccontextmanager
|
||||||
from sse_starlette import EventSourceResponse
|
from sse_starlette import EventSourceResponse
|
||||||
from typing import Any, Dict
|
from typing import List, Tuple
|
||||||
|
|
||||||
from llmtuner.tuner import get_infer_args, load_model_and_tokenizer
|
from llmtuner.tuner import get_infer_args
|
||||||
from llmtuner.extras.misc import get_logits_processor, torch_gc
|
from llmtuner.extras.misc import torch_gc
|
||||||
from llmtuner.extras.template import Template
|
from llmtuner.chat.stream_chat import ChatModel
|
||||||
from llmtuner.api.protocol import (
|
from llmtuner.api.protocol import (
|
||||||
ModelCard,
|
ModelCard,
|
||||||
ModelList,
|
ModelList,
|
||||||
@ -31,11 +29,7 @@ async def lifespan(app: FastAPI): # collects GPU memory
|
|||||||
|
|
||||||
|
|
||||||
def create_app():
|
def create_app():
|
||||||
model_args, data_args, finetuning_args, generating_args = get_infer_args()
|
chat_model = ChatModel(*get_infer_args())
|
||||||
model, tokenizer = load_model_and_tokenizer(model_args, finetuning_args)
|
|
||||||
|
|
||||||
prompt_template = Template(data_args.prompt_template)
|
|
||||||
source_prefix = data_args.source_prefix if data_args.source_prefix else ""
|
|
||||||
|
|
||||||
app = FastAPI(lifespan=lifespan)
|
app = FastAPI(lifespan=lifespan)
|
||||||
|
|
||||||
@ -49,7 +43,6 @@ def create_app():
|
|||||||
|
|
||||||
@app.get("/v1/models", response_model=ModelList)
|
@app.get("/v1/models", response_model=ModelList)
|
||||||
async def list_models():
|
async def list_models():
|
||||||
global model_args
|
|
||||||
model_card = ModelCard(id="gpt-3.5-turbo")
|
model_card = ModelCard(id="gpt-3.5-turbo")
|
||||||
return ModelList(data=[model_card])
|
return ModelList(data=[model_card])
|
||||||
|
|
||||||
@ -63,7 +56,7 @@ def create_app():
|
|||||||
if len(prev_messages) > 0 and prev_messages[0].role == "system":
|
if len(prev_messages) > 0 and prev_messages[0].role == "system":
|
||||||
prefix = prev_messages.pop(0).content
|
prefix = prev_messages.pop(0).content
|
||||||
else:
|
else:
|
||||||
prefix = source_prefix
|
prefix = None
|
||||||
|
|
||||||
history = []
|
history = []
|
||||||
if len(prev_messages) % 2 == 0:
|
if len(prev_messages) % 2 == 0:
|
||||||
@ -71,33 +64,18 @@ def create_app():
|
|||||||
if prev_messages[i].role == "user" and prev_messages[i+1].role == "assistant":
|
if prev_messages[i].role == "user" and prev_messages[i+1].role == "assistant":
|
||||||
history.append([prev_messages[i].content, prev_messages[i+1].content])
|
history.append([prev_messages[i].content, prev_messages[i+1].content])
|
||||||
|
|
||||||
inputs = tokenizer([prompt_template.get_prompt(query, history, prefix)], return_tensors="pt")
|
|
||||||
inputs = inputs.to(model.device)
|
|
||||||
|
|
||||||
gen_kwargs = generating_args.to_dict()
|
|
||||||
gen_kwargs.update({
|
|
||||||
"input_ids": inputs["input_ids"],
|
|
||||||
"temperature": request.temperature if request.temperature else gen_kwargs["temperature"],
|
|
||||||
"top_p": request.top_p if request.top_p else gen_kwargs["top_p"],
|
|
||||||
"logits_processor": get_logits_processor()
|
|
||||||
})
|
|
||||||
|
|
||||||
if request.max_tokens:
|
|
||||||
gen_kwargs.pop("max_length", None)
|
|
||||||
gen_kwargs["max_new_tokens"] = request.max_tokens
|
|
||||||
|
|
||||||
if request.stream:
|
if request.stream:
|
||||||
generate = predict(gen_kwargs, request.model)
|
generate = predict(query, history, prefix, request)
|
||||||
return EventSourceResponse(generate, media_type="text/event-stream")
|
return EventSourceResponse(generate, media_type="text/event-stream")
|
||||||
|
|
||||||
generation_output = model.generate(**gen_kwargs)
|
response, (prompt_length, response_length) = chat_model.chat(
|
||||||
outputs = generation_output.tolist()[0][len(inputs["input_ids"][0]):]
|
query, history, prefix, temperature=request.temperature, top_p=request.top_p, max_new_tokens=request.max_tokens
|
||||||
response = tokenizer.decode(outputs, skip_special_tokens=True)
|
)
|
||||||
|
|
||||||
usage = ChatCompletionResponseUsage(
|
usage = ChatCompletionResponseUsage(
|
||||||
prompt_tokens=len(inputs["input_ids"][0]),
|
prompt_tokens=prompt_length,
|
||||||
completion_tokens=len(outputs),
|
completion_tokens=response_length,
|
||||||
total_tokens=len(inputs["input_ids"][0]) + len(outputs)
|
total_tokens=prompt_length+response_length
|
||||||
)
|
)
|
||||||
|
|
||||||
choice_data = ChatCompletionResponseChoice(
|
choice_data = ChatCompletionResponseChoice(
|
||||||
@ -108,22 +86,18 @@ def create_app():
|
|||||||
|
|
||||||
return ChatCompletionResponse(model=request.model, choices=[choice_data], usage=usage, object="chat.completion")
|
return ChatCompletionResponse(model=request.model, choices=[choice_data], usage=usage, object="chat.completion")
|
||||||
|
|
||||||
async def predict(gen_kwargs: Dict[str, Any], model_id: str):
|
async def predict(query: str, history: List[Tuple[str, str]], prefix: str, request: ChatCompletionRequest):
|
||||||
streamer = TextIteratorStreamer(tokenizer, timeout=60.0, skip_prompt=True, skip_special_tokens=True)
|
|
||||||
gen_kwargs["streamer"] = streamer
|
|
||||||
|
|
||||||
thread = Thread(target=model.generate, kwargs=gen_kwargs)
|
|
||||||
thread.start()
|
|
||||||
|
|
||||||
choice_data = ChatCompletionResponseStreamChoice(
|
choice_data = ChatCompletionResponseStreamChoice(
|
||||||
index=0,
|
index=0,
|
||||||
delta=DeltaMessage(role="assistant"),
|
delta=DeltaMessage(role="assistant"),
|
||||||
finish_reason=None
|
finish_reason=None
|
||||||
)
|
)
|
||||||
chunk = ChatCompletionStreamResponse(model=model_id, choices=[choice_data], object="chat.completion.chunk")
|
chunk = ChatCompletionStreamResponse(model=request.model, choices=[choice_data], object="chat.completion.chunk")
|
||||||
yield chunk.json(exclude_unset=True, ensure_ascii=False)
|
yield chunk.json(exclude_unset=True, ensure_ascii=False)
|
||||||
|
|
||||||
for new_text in streamer:
|
for new_text in chat_model.stream_chat(
|
||||||
|
query, history, prefix, temperature=request.temperature, top_p=request.top_p, max_new_tokens=request.max_tokens
|
||||||
|
):
|
||||||
if len(new_text) == 0:
|
if len(new_text) == 0:
|
||||||
continue
|
continue
|
||||||
|
|
||||||
@ -132,7 +106,7 @@ def create_app():
|
|||||||
delta=DeltaMessage(content=new_text),
|
delta=DeltaMessage(content=new_text),
|
||||||
finish_reason=None
|
finish_reason=None
|
||||||
)
|
)
|
||||||
chunk = ChatCompletionStreamResponse(model=model_id, choices=[choice_data], object="chat.completion.chunk")
|
chunk = ChatCompletionStreamResponse(model=request.model, choices=[choice_data], object="chat.completion.chunk")
|
||||||
yield chunk.json(exclude_unset=True, ensure_ascii=False)
|
yield chunk.json(exclude_unset=True, ensure_ascii=False)
|
||||||
|
|
||||||
choice_data = ChatCompletionResponseStreamChoice(
|
choice_data = ChatCompletionResponseStreamChoice(
|
||||||
@ -140,7 +114,7 @@ def create_app():
|
|||||||
delta=DeltaMessage(),
|
delta=DeltaMessage(),
|
||||||
finish_reason="stop"
|
finish_reason="stop"
|
||||||
)
|
)
|
||||||
chunk = ChatCompletionStreamResponse(model=model_id, choices=[choice_data], object="chat.completion.chunk")
|
chunk = ChatCompletionStreamResponse(model=request.model, choices=[choice_data], object="chat.completion.chunk")
|
||||||
yield chunk.json(exclude_unset=True, ensure_ascii=False)
|
yield chunk.json(exclude_unset=True, ensure_ascii=False)
|
||||||
yield "[DONE]"
|
yield "[DONE]"
|
||||||
|
|
||||||
|
1
src/llmtuner/chat/__init__.py
Normal file
1
src/llmtuner/chat/__init__.py
Normal file
@ -0,0 +1 @@
|
|||||||
|
from llmtuner.chat.stream_chat import ChatModel
|
82
src/llmtuner/chat/stream_chat.py
Normal file
82
src/llmtuner/chat/stream_chat.py
Normal file
@ -0,0 +1,82 @@
|
|||||||
|
from typing import Any, Dict, Generator, List, Optional, Tuple
|
||||||
|
from threading import Thread
|
||||||
|
from transformers import TextIteratorStreamer
|
||||||
|
|
||||||
|
from llmtuner.extras.misc import get_logits_processor
|
||||||
|
from llmtuner.extras.template import Template
|
||||||
|
from llmtuner.hparams import ModelArguments, DataArguments, FinetuningArguments, GeneratingArguments
|
||||||
|
from llmtuner.tuner import load_model_and_tokenizer
|
||||||
|
|
||||||
|
|
||||||
|
class ChatModel:
|
||||||
|
|
||||||
|
def __init__(
|
||||||
|
self,
|
||||||
|
model_args: ModelArguments,
|
||||||
|
data_args: DataArguments,
|
||||||
|
finetuning_args: FinetuningArguments,
|
||||||
|
generating_args: GeneratingArguments
|
||||||
|
) -> None:
|
||||||
|
self.model, self.tokenizer = load_model_and_tokenizer(model_args, finetuning_args)
|
||||||
|
self.template = Template(data_args.prompt_template)
|
||||||
|
self.source_prefix = data_args.source_prefix if data_args.source_prefix else ""
|
||||||
|
self.generating_args = generating_args
|
||||||
|
|
||||||
|
def process_args(
|
||||||
|
self, query: str, history: List[Tuple[str, str]], prefix: Optional[str] = None, **input_kwargs
|
||||||
|
) -> Tuple[Dict[str, Any], int]:
|
||||||
|
prefix = prefix if prefix else self.source_prefix
|
||||||
|
|
||||||
|
inputs = self.tokenizer([self.template.get_prompt(query, history, prefix)], return_tensors="pt")
|
||||||
|
inputs = inputs.to(self.model.device)
|
||||||
|
prompt_length = len(inputs["input_ids"][0])
|
||||||
|
|
||||||
|
temperature = input_kwargs.pop("temperature", None)
|
||||||
|
top_p = input_kwargs.pop("top_p", None)
|
||||||
|
top_k = input_kwargs.pop("top_k", None)
|
||||||
|
repetition_penalty = input_kwargs.pop("repetition_penalty", None)
|
||||||
|
max_length = input_kwargs.pop("max_length", None)
|
||||||
|
max_new_tokens = input_kwargs.pop("max_new_tokens", None)
|
||||||
|
|
||||||
|
gen_kwargs = self.generating_args.to_dict()
|
||||||
|
gen_kwargs.update(dict(
|
||||||
|
input_ids=inputs["input_ids"],
|
||||||
|
temperature=temperature if temperature else gen_kwargs["temperature"],
|
||||||
|
top_p=top_p if top_p else gen_kwargs["top_p"],
|
||||||
|
top_k=top_k if top_k else gen_kwargs["top_k"],
|
||||||
|
repetition_penalty=repetition_penalty if repetition_penalty else gen_kwargs["repetition_penalty"],
|
||||||
|
logits_processor=get_logits_processor()
|
||||||
|
))
|
||||||
|
|
||||||
|
if max_length:
|
||||||
|
gen_kwargs.pop("max_new_tokens", None)
|
||||||
|
gen_kwargs["max_length"] = max_length
|
||||||
|
|
||||||
|
if max_new_tokens:
|
||||||
|
gen_kwargs.pop("max_length", None)
|
||||||
|
gen_kwargs["max_new_tokens"] = max_new_tokens
|
||||||
|
|
||||||
|
return gen_kwargs, prompt_length
|
||||||
|
|
||||||
|
def chat(
|
||||||
|
self, query: str, history: List[Tuple[str, str]], prefix: Optional[str] = None, **input_kwargs
|
||||||
|
) -> Tuple[str, Tuple[int, int]]:
|
||||||
|
gen_kwargs, prompt_length = self.process_args(query, history, prefix, **input_kwargs)
|
||||||
|
generation_output = self.model.generate(**gen_kwargs)
|
||||||
|
outputs = generation_output.tolist()[0][prompt_length:]
|
||||||
|
response = self.tokenizer.decode(outputs, skip_special_tokens=True)
|
||||||
|
response_length = len(outputs)
|
||||||
|
return response, (prompt_length, response_length)
|
||||||
|
|
||||||
|
def stream_chat(
|
||||||
|
self, query: str, history: List[Tuple[str, str]], prefix: Optional[str] = None, **input_kwargs
|
||||||
|
) -> Generator[str, None, None]:
|
||||||
|
gen_kwargs, _ = self.process_args(query, history, prefix, **input_kwargs)
|
||||||
|
streamer = TextIteratorStreamer(self.tokenizer, timeout=60.0, skip_prompt=True, skip_special_tokens=True)
|
||||||
|
gen_kwargs["streamer"] = streamer
|
||||||
|
|
||||||
|
thread = Thread(target=self.model.generate, kwargs=gen_kwargs)
|
||||||
|
thread.start()
|
||||||
|
|
||||||
|
for new_text in streamer:
|
||||||
|
yield new_text
|
@ -29,7 +29,7 @@ class DataArguments:
|
|||||||
"""
|
"""
|
||||||
dataset: Optional[str] = field(
|
dataset: Optional[str] = field(
|
||||||
default="alpaca_zh",
|
default="alpaca_zh",
|
||||||
metadata={"help": "The name of provided dataset(s) to use. Use comma to separate multiple datasets."}
|
metadata={"help": "The name of provided dataset(s) to use. Use commas to separate multiple datasets."}
|
||||||
)
|
)
|
||||||
dataset_dir: Optional[str] = field(
|
dataset_dir: Optional[str] = field(
|
||||||
default="data",
|
default="data",
|
||||||
|
@ -45,7 +45,7 @@ class FinetuningArguments:
|
|||||||
)
|
)
|
||||||
lora_target: Optional[str] = field(
|
lora_target: Optional[str] = field(
|
||||||
default="q_proj,v_proj",
|
default="q_proj,v_proj",
|
||||||
metadata={"help": "Name(s) of target modules to apply LoRA. Use comma to separate multiple modules. \
|
metadata={"help": "Name(s) of target modules to apply LoRA. Use commas to separate multiple modules. \
|
||||||
LLaMA choices: [\"q_proj\", \"k_proj\", \"v_proj\", \"o_proj\", \"gate_proj\", \"up_proj\", \"down_proj\"], \
|
LLaMA choices: [\"q_proj\", \"k_proj\", \"v_proj\", \"o_proj\", \"gate_proj\", \"up_proj\", \"down_proj\"], \
|
||||||
BLOOM & Falcon choices: [\"query_key_value\", \"self_attention.dense\", \"mlp.dense\"], \
|
BLOOM & Falcon choices: [\"query_key_value\", \"self_attention.dense\", \"mlp.dense\"], \
|
||||||
Baichuan choices: [\"W_pack\", \"o_proj\", \"gate_proj\", \"up_proj\", \"down_proj\"]"}
|
Baichuan choices: [\"W_pack\", \"o_proj\", \"gate_proj\", \"up_proj\", \"down_proj\"]"}
|
||||||
|
Loading…
x
Reference in New Issue
Block a user