mirror of
https://github.com/hiyouga/LLaMA-Factory.git
synced 2025-12-16 11:50:35 +08:00
support multiturn training like FastChat
This commit is contained in:
@@ -16,23 +16,27 @@ from transformers import TextIteratorStreamer
|
||||
def main():
|
||||
|
||||
model_args, data_args, finetuning_args, generating_args = prepare_infer_args()
|
||||
model_name = "BLOOM" if "bloom" in model_args.model_name_or_path else "LLaMA"
|
||||
model, tokenizer = load_pretrained(model_args, finetuning_args)
|
||||
|
||||
model_name = "BLOOM" if "bloom" in model_args.model_name_or_path else "LLaMA"
|
||||
prompt_template = Template(data_args.prompt_template)
|
||||
streamer = TextIteratorStreamer(tokenizer, timeout=60.0, skip_prompt=True, skip_special_tokens=True)
|
||||
|
||||
def predict_and_print(query, history: list):
|
||||
def predict_and_print(query, history: list) -> list:
|
||||
input_ids = tokenizer([prompt_template.get_prompt(query, history)], return_tensors="pt")["input_ids"]
|
||||
input_ids = input_ids.to(model.device)
|
||||
|
||||
streamer = TextIteratorStreamer(tokenizer, timeout=60.0, skip_prompt=True, skip_special_tokens=True)
|
||||
|
||||
gen_kwargs = generating_args.to_dict()
|
||||
gen_kwargs["input_ids"] = input_ids
|
||||
gen_kwargs["logits_processor"] = get_logits_processor()
|
||||
gen_kwargs["streamer"] = streamer
|
||||
|
||||
thread = Thread(target=model.generate, kwargs=gen_kwargs)
|
||||
thread.start()
|
||||
|
||||
print("{}: ".format(model_name), end="", flush=True)
|
||||
response = ""
|
||||
print("{}: ".format(model_name), end="")
|
||||
for new_text in streamer:
|
||||
print(new_text, end="", flush=True)
|
||||
response += new_text
|
||||
|
||||
Reference in New Issue
Block a user