mirror of
https://github.com/hiyouga/LLaMA-Factory.git
synced 2025-08-02 03:32:50 +08:00
refactor ray integration, support save ckpt
Former-commit-id: d8cac6f54663e6cffeddf2c65e3da454e7b86a75
This commit is contained in:
parent
bba52e258e
commit
b4174021d6
@ -12,6 +12,7 @@ FORCE_CHECK_IMPORTS=
|
||||
LLAMAFACTORY_VERBOSITY=
|
||||
USE_MODELSCOPE_HUB=
|
||||
USE_OPENMIND_HUB=
|
||||
USE_RAY=
|
||||
RECORD_VRAM=
|
||||
# torchrun
|
||||
FORCE_TORCHRUN=
|
||||
|
@ -95,6 +95,12 @@ FORCE_TORCHRUN=1 NNODES=2 NODE_RANK=1 MASTER_ADDR=192.168.0.1 MASTER_PORT=29500
|
||||
FORCE_TORCHRUN=1 llamafactory-cli train examples/train_lora/llama3_lora_sft_ds3.yaml
|
||||
```
|
||||
|
||||
#### Supervised Fine-Tuning with Ray on 4 GPUs
|
||||
|
||||
```bash
|
||||
USE_RAY=1 llamafactory-cli train examples/train_full/llama3_lora_sft_ray.yaml
|
||||
```
|
||||
|
||||
### QLoRA Fine-Tuning
|
||||
|
||||
#### Supervised Fine-Tuning with 4/8-bit Bitsandbytes/HQQ/EETQ Quantization (Recommended)
|
||||
|
@ -95,6 +95,12 @@ FORCE_TORCHRUN=1 NNODES=2 NODE_RANK=1 MASTER_ADDR=192.168.0.1 MASTER_PORT=29500
|
||||
FORCE_TORCHRUN=1 llamafactory-cli train examples/train_lora/llama3_lora_sft_ds3.yaml
|
||||
```
|
||||
|
||||
#### 使用 Ray 在 4 张 GPU 上微调
|
||||
|
||||
```bash
|
||||
USE_RAY=1 llamafactory-cli train examples/train_full/llama3_lora_sft_ray.yaml
|
||||
```
|
||||
|
||||
### QLoRA 微调
|
||||
|
||||
#### 基于 4/8 比特 Bitsandbytes/HQQ/EETQ 量化进行指令监督微调(推荐)
|
||||
|
@ -9,7 +9,6 @@ finetuning_type: lora
|
||||
lora_target: all
|
||||
|
||||
### dataset
|
||||
dataset_dir: /home/ray/default/LLaMA-Factory/data/
|
||||
dataset: identity,alpaca_en_demo
|
||||
template: llama3
|
||||
cutoff_len: 2048
|
||||
@ -39,10 +38,3 @@ val_size: 0.1
|
||||
per_device_eval_batch_size: 1
|
||||
eval_strategy: steps
|
||||
eval_steps: 500
|
||||
|
||||
|
||||
### ray setup
|
||||
resources_per_worker:
|
||||
GPU: 1
|
||||
num_workers: 4
|
||||
# placement_strategy: ...
|
||||
|
48
examples/train_lora/llama3_lora_sft_ray.yaml
Normal file
48
examples/train_lora/llama3_lora_sft_ray.yaml
Normal file
@ -0,0 +1,48 @@
|
||||
### model
|
||||
model_name_or_path: meta-llama/Meta-Llama-3-8B-Instruct # or use local absolute path
|
||||
trust_remote_code: true
|
||||
|
||||
### method
|
||||
stage: sft
|
||||
do_train: true
|
||||
finetuning_type: lora
|
||||
lora_target: all
|
||||
|
||||
### dataset
|
||||
dataset: identity,alpaca_en_demo
|
||||
dataset_dir: REMOTE:llamafactory/demo_data # or use local absolute path
|
||||
template: llama3
|
||||
cutoff_len: 2048
|
||||
max_samples: 1000
|
||||
overwrite_cache: true
|
||||
preprocessing_num_workers: 16
|
||||
|
||||
### output
|
||||
output_dir: tmp_dir
|
||||
logging_steps: 10
|
||||
save_steps: 500
|
||||
plot_loss: true
|
||||
overwrite_output_dir: true
|
||||
|
||||
### train
|
||||
per_device_train_batch_size: 1
|
||||
gradient_accumulation_steps: 8
|
||||
learning_rate: 1.0e-4
|
||||
num_train_epochs: 3.0
|
||||
lr_scheduler_type: cosine
|
||||
warmup_ratio: 0.1
|
||||
bf16: true
|
||||
ddp_timeout: 180000000
|
||||
|
||||
### eval
|
||||
val_size: 0.1
|
||||
per_device_eval_batch_size: 1
|
||||
eval_strategy: steps
|
||||
eval_steps: 500
|
||||
|
||||
### ray
|
||||
ray_run_name: llama3_8b_sft_lora
|
||||
ray_num_workers: 4 # number of GPUs to use
|
||||
resources_per_worker:
|
||||
GPU: 1
|
||||
placement_strategy: PACK
|
@ -24,8 +24,7 @@ from .chat.chat_model import run_chat
|
||||
from .eval.evaluator import run_eval
|
||||
from .extras import logging
|
||||
from .extras.env import VERSION, print_env
|
||||
from .extras.misc import get_device_count
|
||||
from .integrations.ray.ray_utils import should_use_ray
|
||||
from .extras.misc import get_device_count, use_ray
|
||||
from .train.tuner import export_model, run_exp
|
||||
from .webui.interface import run_web_demo, run_web_ui
|
||||
|
||||
@ -88,8 +87,7 @@ def main():
|
||||
export_model()
|
||||
elif command == Command.TRAIN:
|
||||
force_torchrun = os.getenv("FORCE_TORCHRUN", "0").lower() in ["true", "1"]
|
||||
use_ray = should_use_ray()
|
||||
if force_torchrun or (get_device_count() > 1 and not use_ray):
|
||||
if force_torchrun or (get_device_count() > 1 and not use_ray()):
|
||||
master_addr = os.getenv("MASTER_ADDR", "127.0.0.1")
|
||||
master_port = os.getenv("MASTER_PORT", str(random.randint(20001, 29999)))
|
||||
logger.info_rank0(f"Initializing distributed tasks at: {master_addr}:{master_port}")
|
||||
|
@ -229,7 +229,7 @@ def skip_check_imports() -> None:
|
||||
r"""
|
||||
Avoids flash attention import error in custom model files.
|
||||
"""
|
||||
if os.environ.get("FORCE_CHECK_IMPORTS", "0").lower() not in ["true", "1"]:
|
||||
if os.getenv("FORCE_CHECK_IMPORTS", "0").lower() not in ["true", "1"]:
|
||||
transformers.dynamic_module_utils.check_imports = get_relative_imports
|
||||
|
||||
|
||||
@ -275,8 +275,12 @@ def try_download_model_from_other_hub(model_args: "ModelArguments") -> str:
|
||||
|
||||
|
||||
def use_modelscope() -> bool:
|
||||
return os.environ.get("USE_MODELSCOPE_HUB", "0").lower() in ["true", "1"]
|
||||
return os.getenv("USE_MODELSCOPE_HUB", "0").lower() in ["true", "1"]
|
||||
|
||||
|
||||
def use_openmind() -> bool:
|
||||
return os.environ.get("USE_OPENMIND_HUB", "0").lower() in ["true", "1"]
|
||||
return os.getenv("USE_OPENMIND_HUB", "0").lower() in ["true", "1"]
|
||||
|
||||
|
||||
def use_ray() -> bool:
|
||||
return os.getenv("USE_RAY", "0").lower() in ["true", "1"]
|
||||
|
@ -62,6 +62,10 @@ def is_pillow_available():
|
||||
return _is_package_available("PIL")
|
||||
|
||||
|
||||
def is_ray_available():
|
||||
return _is_package_available("ray")
|
||||
|
||||
|
||||
def is_requests_available():
|
||||
return _is_package_available("requests")
|
||||
|
||||
|
@ -17,7 +17,8 @@ from .evaluation_args import EvaluationArguments
|
||||
from .finetuning_args import FinetuningArguments
|
||||
from .generating_args import GeneratingArguments
|
||||
from .model_args import ModelArguments
|
||||
from .parser import get_eval_args, get_infer_args, get_train_args
|
||||
from .parser import get_eval_args, get_infer_args, get_ray_args, get_train_args, read_args
|
||||
from .training_args import RayArguments, TrainingArguments
|
||||
|
||||
|
||||
__all__ = [
|
||||
@ -26,7 +27,11 @@ __all__ = [
|
||||
"FinetuningArguments",
|
||||
"GeneratingArguments",
|
||||
"ModelArguments",
|
||||
"RayArguments",
|
||||
"TrainingArguments",
|
||||
"get_eval_args",
|
||||
"get_infer_args",
|
||||
"get_ray_args",
|
||||
"get_train_args",
|
||||
"read_args",
|
||||
]
|
||||
|
@ -19,12 +19,12 @@ import json
|
||||
import os
|
||||
import sys
|
||||
from pathlib import Path
|
||||
from typing import Any, Dict, Optional, Tuple
|
||||
from typing import Any, Dict, List, Optional, Tuple, Union
|
||||
|
||||
import torch
|
||||
import transformers
|
||||
import yaml
|
||||
from transformers import HfArgumentParser, Seq2SeqTrainingArguments
|
||||
from transformers import HfArgumentParser
|
||||
from transformers.integrations import is_deepspeed_zero3_enabled
|
||||
from transformers.trainer_utils import get_last_checkpoint
|
||||
from transformers.training_args import ParallelMode
|
||||
@ -34,12 +34,12 @@ from transformers.utils.versions import require_version
|
||||
from ..extras import logging
|
||||
from ..extras.constants import CHECKPOINT_NAMES
|
||||
from ..extras.misc import check_dependencies, get_current_device
|
||||
from ..integrations.ray.ray_train_args import RayTrainArguments
|
||||
from .data_args import DataArguments
|
||||
from .evaluation_args import EvaluationArguments
|
||||
from .finetuning_args import FinetuningArguments
|
||||
from .generating_args import GeneratingArguments
|
||||
from .model_args import ModelArguments
|
||||
from .training_args import RayArguments, TrainingArguments
|
||||
|
||||
|
||||
logger = logging.get_logger(__name__)
|
||||
@ -47,60 +47,41 @@ logger = logging.get_logger(__name__)
|
||||
check_dependencies()
|
||||
|
||||
|
||||
_TRAIN_ARGS = [
|
||||
ModelArguments,
|
||||
DataArguments,
|
||||
Seq2SeqTrainingArguments,
|
||||
FinetuningArguments,
|
||||
GeneratingArguments,
|
||||
RayTrainArguments,
|
||||
]
|
||||
_TRAIN_CLS = Tuple[
|
||||
ModelArguments,
|
||||
DataArguments,
|
||||
Seq2SeqTrainingArguments,
|
||||
FinetuningArguments,
|
||||
GeneratingArguments,
|
||||
RayTrainArguments,
|
||||
]
|
||||
_TRAIN_ARGS = [ModelArguments, DataArguments, TrainingArguments, FinetuningArguments, GeneratingArguments]
|
||||
_TRAIN_CLS = Tuple[ModelArguments, DataArguments, TrainingArguments, FinetuningArguments, GeneratingArguments]
|
||||
_INFER_ARGS = [ModelArguments, DataArguments, FinetuningArguments, GeneratingArguments]
|
||||
_INFER_CLS = Tuple[ModelArguments, DataArguments, FinetuningArguments, GeneratingArguments]
|
||||
_EVAL_ARGS = [ModelArguments, DataArguments, EvaluationArguments, FinetuningArguments]
|
||||
_EVAL_CLS = Tuple[ModelArguments, DataArguments, EvaluationArguments, FinetuningArguments]
|
||||
|
||||
|
||||
def _read_args(args: Optional[Dict[str, Any]] = None) -> Dict[str, Any]:
|
||||
def read_args(args: Optional[Union[Dict[str, Any], List[str]]] = None) -> Union[Dict[str, Any], List[str]]:
|
||||
if args is not None:
|
||||
return args
|
||||
|
||||
if len(sys.argv) == 2 and (sys.argv[1].endswith(".yaml") or sys.argv[1].endswith(".yml")):
|
||||
# read yaml file
|
||||
return yaml.safe_load(Path(sys.argv[1]).absolute().read_text())
|
||||
elif len(sys.argv) == 2 and sys.argv[1].endswith(".json"):
|
||||
# read json file
|
||||
return json.loads(Path(sys.argv[1]).absolute().read_text())
|
||||
else:
|
||||
return {}
|
||||
return sys.argv[1:]
|
||||
|
||||
|
||||
def _parse_args(
|
||||
parser: "HfArgumentParser", args: Optional[Dict[str, Any]] = None, allow_extra_keys: bool = False
|
||||
parser: "HfArgumentParser", args: Optional[Union[Dict[str, Any], List[str]]] = None, allow_extra_keys: bool = False
|
||||
) -> Tuple[Any]:
|
||||
args_dict = _read_args(args)
|
||||
args = read_args(args)
|
||||
if isinstance(args, dict):
|
||||
return parser.parse_dict(args, allow_extra_keys=allow_extra_keys)
|
||||
|
||||
if args_dict:
|
||||
return parser.parse_dict(args_dict, allow_extra_keys=allow_extra_keys)
|
||||
else:
|
||||
(*parsed_args, unknown_args) = parser.parse_args_into_dataclasses(
|
||||
args=args_dict, return_remaining_strings=True
|
||||
)
|
||||
(*parsed_args, unknown_args) = parser.parse_args_into_dataclasses(args=args, return_remaining_strings=True)
|
||||
|
||||
if unknown_args:
|
||||
print(parser.format_help())
|
||||
print(f"Got unknown args, potentially deprecated arguments: {unknown_args}")
|
||||
raise ValueError(f"Some specified arguments are not used by the HfArgumentParser: {unknown_args}")
|
||||
if unknown_args:
|
||||
print(parser.format_help())
|
||||
print(f"Got unknown args, potentially deprecated arguments: {unknown_args}")
|
||||
raise ValueError(f"Some specified arguments are not used by the HfArgumentParser: {unknown_args}")
|
||||
|
||||
return (*parsed_args,)
|
||||
return (*parsed_args,)
|
||||
|
||||
|
||||
def _set_transformers_logging() -> None:
|
||||
@ -141,7 +122,7 @@ def _verify_model_args(
|
||||
def _check_extra_dependencies(
|
||||
model_args: "ModelArguments",
|
||||
finetuning_args: "FinetuningArguments",
|
||||
training_args: Optional["Seq2SeqTrainingArguments"] = None,
|
||||
training_args: Optional["TrainingArguments"] = None,
|
||||
) -> None:
|
||||
if os.getenv("DISABLE_VERSION_CHECK", "0").lower() in ["true", "1"]:
|
||||
logger.warning_once("Version checking has been disabled, may lead to unexpected behaviors.")
|
||||
@ -177,31 +158,29 @@ def _check_extra_dependencies(
|
||||
require_version("rouge_chinese", "To fix: pip install rouge-chinese")
|
||||
|
||||
|
||||
def _parse_train_args(args: Optional[Dict[str, Any]] = None) -> _TRAIN_CLS:
|
||||
def _parse_train_args(args: Optional[Union[Dict[str, Any], List[str]]] = None) -> _TRAIN_CLS:
|
||||
parser = HfArgumentParser(_TRAIN_ARGS)
|
||||
return _parse_args(parser, args)
|
||||
|
||||
|
||||
def _parse_infer_args(args: Optional[Dict[str, Any]] = None) -> _INFER_CLS:
|
||||
def _parse_infer_args(args: Optional[Union[Dict[str, Any], List[str]]] = None) -> _INFER_CLS:
|
||||
parser = HfArgumentParser(_INFER_ARGS)
|
||||
return _parse_args(parser, args)
|
||||
|
||||
|
||||
def _parse_eval_args(args: Optional[Dict[str, Any]] = None) -> _EVAL_CLS:
|
||||
def _parse_eval_args(args: Optional[Union[Dict[str, Any], List[str]]] = None) -> _EVAL_CLS:
|
||||
parser = HfArgumentParser(_EVAL_ARGS)
|
||||
return _parse_args(parser, args)
|
||||
|
||||
|
||||
def _parse_ray_args(args: Optional[Dict[str, Any]] = None) -> RayTrainArguments:
|
||||
parser = HfArgumentParser(RayTrainArguments)
|
||||
ray_args = _parse_args(parser, args, allow_extra_keys=True)[0]
|
||||
if ray_args.use_ray:
|
||||
require_version("ray", "To fix: pip install ray")
|
||||
def get_ray_args(args: Optional[Union[Dict[str, Any], List[str]]] = None) -> RayArguments:
|
||||
parser = HfArgumentParser(RayArguments)
|
||||
(ray_args,) = _parse_args(parser, args, allow_extra_keys=True)
|
||||
return ray_args
|
||||
|
||||
|
||||
def get_train_args(args: Optional[Dict[str, Any]] = None) -> _TRAIN_CLS:
|
||||
model_args, data_args, training_args, finetuning_args, generating_args, _ = _parse_train_args(args)
|
||||
def get_train_args(args: Optional[Union[Dict[str, Any], List[str]]] = None) -> _TRAIN_CLS:
|
||||
model_args, data_args, training_args, finetuning_args, generating_args = _parse_train_args(args)
|
||||
|
||||
# Setup logging
|
||||
if training_args.should_log:
|
||||
@ -410,7 +389,7 @@ def get_train_args(args: Optional[Dict[str, Any]] = None) -> _TRAIN_CLS:
|
||||
return model_args, data_args, training_args, finetuning_args, generating_args
|
||||
|
||||
|
||||
def get_infer_args(args: Optional[Dict[str, Any]] = None) -> _INFER_CLS:
|
||||
def get_infer_args(args: Optional[Union[Dict[str, Any], List[str]]] = None) -> _INFER_CLS:
|
||||
model_args, data_args, finetuning_args, generating_args = _parse_infer_args(args)
|
||||
|
||||
_set_transformers_logging()
|
||||
@ -443,7 +422,7 @@ def get_infer_args(args: Optional[Dict[str, Any]] = None) -> _INFER_CLS:
|
||||
return model_args, data_args, finetuning_args, generating_args
|
||||
|
||||
|
||||
def get_eval_args(args: Optional[Dict[str, Any]] = None) -> _EVAL_CLS:
|
||||
def get_eval_args(args: Optional[Union[Dict[str, Any], List[str]]] = None) -> _EVAL_CLS:
|
||||
model_args, data_args, eval_args, finetuning_args = _parse_eval_args(args)
|
||||
|
||||
_set_transformers_logging()
|
||||
|
48
src/llamafactory/hparams/training_args.py
Normal file
48
src/llamafactory/hparams/training_args.py
Normal file
@ -0,0 +1,48 @@
|
||||
import json
|
||||
from dataclasses import dataclass, field
|
||||
from typing import Literal, Optional, Union
|
||||
|
||||
from transformers import Seq2SeqTrainingArguments
|
||||
from transformers.training_args import _convert_str_dict
|
||||
|
||||
from ..extras.misc import use_ray
|
||||
|
||||
|
||||
@dataclass
|
||||
class RayArguments:
|
||||
r"""
|
||||
Arguments pertaining to the Ray training.
|
||||
"""
|
||||
|
||||
ray_run_name: Optional[str] = field(
|
||||
default=None,
|
||||
metadata={"help": "The training results will be saved at `saves/ray_run_name`."},
|
||||
)
|
||||
ray_num_workers: int = field(
|
||||
default=1,
|
||||
metadata={"help": "The number of workers for Ray training. Default is 1 worker."},
|
||||
)
|
||||
resources_per_worker: Union[dict, str] = field(
|
||||
default_factory=lambda: {"GPU": 1},
|
||||
metadata={"help": "The resources per worker for Ray training. Default is to use 1 GPU per worker."},
|
||||
)
|
||||
placement_strategy: Literal["SPREAD", "PACK", "STRICT_SPREAD", "STRICT_PACK"] = field(
|
||||
default="PACK",
|
||||
metadata={"help": "The placement strategy for Ray training. Default is PACK."},
|
||||
)
|
||||
|
||||
def __post_init__(self):
|
||||
self.use_ray = use_ray()
|
||||
if isinstance(self.resources_per_worker, str) and self.resources_per_worker.startswith("{"):
|
||||
self.resources_per_worker = _convert_str_dict(json.loads(self.resources_per_worker))
|
||||
|
||||
|
||||
@dataclass
|
||||
class TrainingArguments(RayArguments, Seq2SeqTrainingArguments):
|
||||
r"""
|
||||
Arguments pertaining to the trainer.
|
||||
"""
|
||||
|
||||
def __post_init__(self):
|
||||
Seq2SeqTrainingArguments.__post_init__(self)
|
||||
RayArguments.__post_init__(self)
|
@ -1,26 +0,0 @@
|
||||
from typing import Any, Callable, Dict
|
||||
|
||||
from ray.train import ScalingConfig
|
||||
from ray.train.torch import TorchTrainer
|
||||
|
||||
from .ray_train_args import RayTrainArguments
|
||||
|
||||
|
||||
def get_ray_trainer(
|
||||
training_function: Callable,
|
||||
train_loop_config: Dict[str, Any],
|
||||
ray_args: RayTrainArguments,
|
||||
) -> TorchTrainer:
|
||||
if not ray_args.use_ray:
|
||||
raise ValueError("Ray is not enabled. Please set USE_RAY=1 in your environment.")
|
||||
|
||||
trainer = TorchTrainer(
|
||||
training_function,
|
||||
train_loop_config=train_loop_config,
|
||||
scaling_config=ScalingConfig(
|
||||
num_workers=ray_args.num_workers,
|
||||
resources_per_worker=ray_args.resources_per_worker,
|
||||
use_gpu=True,
|
||||
),
|
||||
)
|
||||
return trainer
|
@ -1,30 +0,0 @@
|
||||
from dataclasses import dataclass, field
|
||||
from typing import Any, Dict, Literal, Optional
|
||||
|
||||
from .ray_utils import should_use_ray
|
||||
|
||||
|
||||
@dataclass
|
||||
class RayTrainArguments:
|
||||
r"""
|
||||
Arguments pertaining to the Ray training.
|
||||
"""
|
||||
|
||||
resources_per_worker: Optional[Dict[str, Any]] = field(
|
||||
default_factory=lambda: {"GPU": 1},
|
||||
metadata={"help": "The resources per worker for Ray training. Default is to use 1 GPU per worker."},
|
||||
)
|
||||
num_workers: Optional[int] = field(
|
||||
default=1, metadata={"help": "The number of workers for Ray training. Default is 1 worker."}
|
||||
)
|
||||
placement_strategy: Optional[Literal["SPREAD", "PACK", "STRICT_SPREAD", "STRICT_PACK"]] = field(
|
||||
default="PACK", metadata={"help": "The placement strategy for Ray training. Default is PACK."}
|
||||
)
|
||||
|
||||
@property
|
||||
def use_ray(self) -> bool:
|
||||
"""
|
||||
Always returns the value from the environment variable check.
|
||||
This prevents manual setting of use_ray.
|
||||
"""
|
||||
return should_use_ray()
|
@ -1,5 +0,0 @@
|
||||
import os
|
||||
|
||||
|
||||
def should_use_ray():
|
||||
return os.getenv("USE_RAY", "0").lower() in ["true", "1"]
|
@ -18,7 +18,8 @@
|
||||
# limitations under the License.
|
||||
|
||||
from collections.abc import Mapping
|
||||
from typing import TYPE_CHECKING, Callable, Dict, List, Optional, Tuple, Union
|
||||
from pathlib import Path
|
||||
from typing import TYPE_CHECKING, Any, Callable, Dict, List, Optional, Tuple, Union
|
||||
|
||||
import torch
|
||||
from transformers import Trainer
|
||||
@ -31,7 +32,7 @@ from typing_extensions import override
|
||||
|
||||
from ..extras import logging
|
||||
from ..extras.constants import IGNORE_INDEX
|
||||
from ..extras.packages import is_galore_available
|
||||
from ..extras.packages import is_galore_available, is_ray_available
|
||||
from ..hparams import FinetuningArguments, ModelArguments
|
||||
from ..model import find_all_linear_modules, load_model, load_tokenizer, load_valuehead_params
|
||||
|
||||
@ -40,11 +41,16 @@ if is_galore_available():
|
||||
from galore_torch import GaLoreAdafactor, GaLoreAdamW, GaLoreAdamW8bit # type: ignore
|
||||
|
||||
|
||||
if is_ray_available():
|
||||
from ray.train import RunConfig, ScalingConfig
|
||||
from ray.train.torch import TorchTrainer
|
||||
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from transformers import PreTrainedModel, Seq2SeqTrainingArguments, TrainerCallback
|
||||
from transformers import PreTrainedModel, TrainerCallback
|
||||
from trl import AutoModelForCausalLMWithValueHead
|
||||
|
||||
from ..hparams import DataArguments
|
||||
from ..hparams import DataArguments, RayArguments, TrainingArguments
|
||||
|
||||
|
||||
logger = logging.get_logger(__name__)
|
||||
@ -75,7 +81,7 @@ def create_modelcard_and_push(
|
||||
trainer: "Trainer",
|
||||
model_args: "ModelArguments",
|
||||
data_args: "DataArguments",
|
||||
training_args: "Seq2SeqTrainingArguments",
|
||||
training_args: "TrainingArguments",
|
||||
finetuning_args: "FinetuningArguments",
|
||||
) -> None:
|
||||
kwargs = {
|
||||
@ -188,7 +194,7 @@ def _get_decay_parameter_names(model: "PreTrainedModel") -> List[str]:
|
||||
|
||||
def _create_galore_optimizer(
|
||||
model: "PreTrainedModel",
|
||||
training_args: "Seq2SeqTrainingArguments",
|
||||
training_args: "TrainingArguments",
|
||||
finetuning_args: "FinetuningArguments",
|
||||
) -> "torch.optim.Optimizer":
|
||||
if len(finetuning_args.galore_target) == 1 and finetuning_args.galore_target[0] == "all":
|
||||
@ -272,7 +278,7 @@ def _create_galore_optimizer(
|
||||
|
||||
def _create_loraplus_optimizer(
|
||||
model: "PreTrainedModel",
|
||||
training_args: "Seq2SeqTrainingArguments",
|
||||
training_args: "TrainingArguments",
|
||||
finetuning_args: "FinetuningArguments",
|
||||
) -> "torch.optim.Optimizer":
|
||||
default_lr = training_args.learning_rate
|
||||
@ -312,7 +318,7 @@ def _create_loraplus_optimizer(
|
||||
|
||||
def _create_badam_optimizer(
|
||||
model: "PreTrainedModel",
|
||||
training_args: "Seq2SeqTrainingArguments",
|
||||
training_args: "TrainingArguments",
|
||||
finetuning_args: "FinetuningArguments",
|
||||
) -> "torch.optim.Optimizer":
|
||||
decay_params, nodecay_params = [], []
|
||||
@ -373,7 +379,7 @@ def _create_badam_optimizer(
|
||||
|
||||
def _create_adam_mini_optimizer(
|
||||
model: "PreTrainedModel",
|
||||
training_args: "Seq2SeqTrainingArguments",
|
||||
training_args: "TrainingArguments",
|
||||
) -> "torch.optim.Optimizer":
|
||||
from adam_mini import Adam_mini # type: ignore
|
||||
|
||||
@ -398,7 +404,7 @@ def _create_adam_mini_optimizer(
|
||||
|
||||
def create_custom_optimizer(
|
||||
model: "PreTrainedModel",
|
||||
training_args: "Seq2SeqTrainingArguments",
|
||||
training_args: "TrainingArguments",
|
||||
finetuning_args: "FinetuningArguments",
|
||||
) -> Optional["torch.optim.Optimizer"]:
|
||||
if finetuning_args.use_galore:
|
||||
@ -415,7 +421,7 @@ def create_custom_optimizer(
|
||||
|
||||
|
||||
def create_custom_scheduler(
|
||||
training_args: "Seq2SeqTrainingArguments",
|
||||
training_args: "TrainingArguments",
|
||||
num_training_steps: int,
|
||||
optimizer: Optional["torch.optim.Optimizer"] = None,
|
||||
) -> None:
|
||||
@ -499,3 +505,28 @@ def get_swanlab_callback(finetuning_args: "FinetuningArguments") -> "TrainerCall
|
||||
config={"Framework": "🦙LlamaFactory"},
|
||||
)
|
||||
return swanlab_callback
|
||||
|
||||
|
||||
def get_ray_trainer(
|
||||
training_function: Callable,
|
||||
train_loop_config: Dict[str, Any],
|
||||
ray_args: "RayArguments",
|
||||
) -> "TorchTrainer":
|
||||
if not ray_args.use_ray:
|
||||
raise ValueError("Ray was not enabled. Please set `USE_RAY=1` to enable ray.")
|
||||
|
||||
trainer = TorchTrainer(
|
||||
training_function,
|
||||
train_loop_config=train_loop_config,
|
||||
scaling_config=ScalingConfig(
|
||||
num_workers=ray_args.ray_num_workers,
|
||||
resources_per_worker=ray_args.resources_per_worker,
|
||||
placement_strategy=ray_args.placement_strategy,
|
||||
use_gpu=True,
|
||||
),
|
||||
run_config=RunConfig(
|
||||
name=ray_args.ray_run_name,
|
||||
storage_path=Path("./saves").absolute().as_posix(),
|
||||
),
|
||||
)
|
||||
return trainer
|
||||
|
@ -22,8 +22,8 @@ from transformers import PreTrainedModel
|
||||
from ..data import get_template_and_fix_tokenizer
|
||||
from ..extras import logging
|
||||
from ..extras.constants import V_HEAD_SAFE_WEIGHTS_NAME, V_HEAD_WEIGHTS_NAME
|
||||
from ..hparams import get_infer_args, get_train_args
|
||||
from ..hparams.parser import _parse_ray_args, _read_args
|
||||
from ..extras.packages import is_ray_available
|
||||
from ..hparams import get_infer_args, get_ray_args, get_train_args, read_args
|
||||
from ..model import load_model, load_tokenizer
|
||||
from .callbacks import LogCallback, PissaConvertCallback, ReporterCallback
|
||||
from .dpo import run_dpo
|
||||
@ -32,7 +32,11 @@ from .ppo import run_ppo
|
||||
from .pt import run_pt
|
||||
from .rm import run_rm
|
||||
from .sft import run_sft
|
||||
from .trainer_utils import get_swanlab_callback
|
||||
from .trainer_utils import get_ray_trainer, get_swanlab_callback
|
||||
|
||||
|
||||
if is_ray_available():
|
||||
from ray.train.huggingface.transformers import RayTrainReportCallback
|
||||
|
||||
|
||||
if TYPE_CHECKING:
|
||||
@ -43,10 +47,8 @@ logger = logging.get_logger(__name__)
|
||||
|
||||
|
||||
def training_function(config: Dict[str, Any]) -> None:
|
||||
args = config.get("args", None)
|
||||
callbacks = config.get("callbacks", [])
|
||||
|
||||
callbacks.append(LogCallback())
|
||||
args = config.get("args")
|
||||
callbacks: List[Any] = config.get("callbacks")
|
||||
model_args, data_args, training_args, finetuning_args, generating_args = get_train_args(args)
|
||||
|
||||
if finetuning_args.pissa_convert:
|
||||
@ -73,31 +75,22 @@ def training_function(config: Dict[str, Any]) -> None:
|
||||
raise ValueError(f"Unknown task: {finetuning_args.stage}.")
|
||||
|
||||
|
||||
def run_exp(args: Optional[Dict[str, Any]] = None, callbacks: List["TrainerCallback"] = []) -> None:
|
||||
args_dict = _read_args(args)
|
||||
ray_args = _parse_ray_args(args_dict)
|
||||
def run_exp(args: Optional[Dict[str, Any]] = None, callbacks: Optional[List["TrainerCallback"]] = None) -> None:
|
||||
callbacks = callbacks or []
|
||||
callbacks.append(LogCallback())
|
||||
|
||||
args = read_args(args)
|
||||
ray_args = get_ray_args(args)
|
||||
if ray_args.use_ray:
|
||||
# Import lazily to avoid ray not installed error
|
||||
from ..integrations.ray.ray_train import get_ray_trainer
|
||||
|
||||
# Initialize ray trainer
|
||||
callbacks.append(RayTrainReportCallback())
|
||||
trainer = get_ray_trainer(
|
||||
training_function=training_function,
|
||||
train_loop_config={
|
||||
"args": args_dict,
|
||||
"callbacks": callbacks,
|
||||
},
|
||||
train_loop_config={"args": args, "callbacks": callbacks},
|
||||
ray_args=ray_args,
|
||||
)
|
||||
trainer.fit()
|
||||
else:
|
||||
training_function(
|
||||
config={
|
||||
"args": args_dict,
|
||||
"callbacks": callbacks,
|
||||
}
|
||||
)
|
||||
training_function(config={"args": args, "callbacks": callbacks})
|
||||
|
||||
|
||||
def export_model(args: Optional[Dict[str, Any]] = None) -> None:
|
||||
|
Loading…
x
Reference in New Issue
Block a user