[v1] add batch generator (#9744)

This commit is contained in:
Yaowei Zheng
2026-01-10 04:24:09 +08:00
committed by GitHub
parent d7d734d54c
commit b2effbd77c
26 changed files with 604 additions and 850 deletions

View File

@@ -0,0 +1,49 @@
# Copyright 2025 the LlamaFactory team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from llamafactory.v1.config import DataArguments, ModelArguments, TrainingArguments
from llamafactory.v1.core.data_engine import DataEngine
from llamafactory.v1.core.model_engine import ModelEngine
from llamafactory.v1.core.utils.batching import BatchGenerator
def test_normal_batching():
data_args = DataArguments(dataset="llamafactory/v1-sft-demo")
data_engine = DataEngine(data_args=data_args)
model_args = ModelArguments(model="llamafactory/tiny-random-qwen3")
model_engine = ModelEngine(model_args=model_args)
training_args = TrainingArguments(
micro_batch_size=4,
global_batch_size=8,
cutoff_len=10,
batching_workers=0,
batching_strategy="normal",
)
batch_generator = BatchGenerator(
data_engine,
model_engine.renderer,
micro_batch_size=training_args.micro_batch_size,
global_batch_size=training_args.global_batch_size,
cutoff_len=training_args.cutoff_len,
batching_workers=training_args.batching_workers,
batching_strategy=training_args.batching_strategy,
)
assert len(batch_generator) == len(data_engine) // training_args.global_batch_size
batch = next(iter(batch_generator))
assert len(batch) == 2
assert batch[0]["input_ids"].shape == (4, 10)
if __name__ == "__main__":
test_normal_batching()

View File

@@ -1,171 +0,0 @@
# Copyright 2025 the LlamaFactory team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Integration tests for DataLoader with different combinations of packing and dynamic batching.
Tests the 4 scenarios:
a) non pack + non dynamic.
b) non pack + dynamic.
c) pack + non dynamic.
d) pack + dynamic.
"""
# import torch
# from torch.utils.data import DataLoader as TorchDataLoader
# from torch.utils.data import Dataset
# from transformers import AutoTokenizer
# from llamafactory.v1.config.data_args import DataArguments
# from llamafactory.v1.core.data_engine import DataEngine
# from llamafactory.v1.core.utils.data_collator import DefaultCollator
# from llamafactory.v1.core.utils.data_loader import DataLoader
# from llamafactory.v1.plugins.data_plugins.rendering import QwenTemplate
# from llamafactory.v1.utils.batching_queue import TextBatchingQueue
# class TensorDataset(Dataset):
# """Wrapper dataset that converts DataEngine samples to tensor format."""
# def __init__(self, data_engine: DataEngine, processor, template, max_samples: int = None):
# self.data_engine = data_engine
# self.processor = processor
# self.template = template
# self.max_samples = max_samples or len(data_engine)
# self.tokenizer = processor.tokenizer if hasattr(processor, "tokenizer") else processor
# def __len__(self):
# return min(self.max_samples, len(self.data_engine))
# def __getitem__(self, idx):
# # Get sample from DataEngine
# sample = self.data_engine[idx]
# # Extract messages from sample
# # DataEngine returns samples with format like {"messages": [...], ...}
# # For llamafactory/v1-sft-demo, the format should have "messages" field
# messages = None
# if "messages" in sample:
# messages = sample["messages"]
# elif "conversations" in sample:
# messages = sample["conversations"]
# elif "conversation" in sample:
# messages = sample["conversation"]
# else:
# # Try to find message-like fields (skip _dataset_name)
# for key, value in sample.items():
# if key.startswith("_"):
# continue
# if isinstance(value, list) and len(value) > 0:
# # Check if it looks like a message list
# if isinstance(value[0], dict) and "role" in value[0]:
# messages = value
# break
# if messages is None:
# raise ValueError(f"Could not find messages in sample: {list(sample.keys())}")
# # Encode messages using template
# encoded = self.template.encode_messages(self.tokenizer, messages)
# # Convert to tensors
# return {
# "input_ids": torch.tensor(encoded["input_ids"], dtype=torch.long),
# "attention_mask": torch.tensor(encoded["attention_mask"], dtype=torch.long),
# "labels": torch.tensor(encoded["labels"], dtype=torch.long),
# }
# def create_real_dataset(max_samples: int = 20, batch_size: int = 4):
# """Create a real dataset using DataEngine."""
# data_args = DataArguments(dataset="llamafactory/v1-sft-demo")
# data_engine = DataEngine(data_args)
# # Create processor and template
# processor = AutoTokenizer.from_pretrained("llamafactory/tiny-random-qwen2.5")
# template = QwenTemplate()
# # Create tensor dataset
# raw_data_dataset = TensorDataset(data_engine, processor, template, max_samples=max_samples)
# # Create torch DataLoader
# torch_dataloader = TorchDataLoader(
# raw_data_dataset,
# batch_size=batch_size,
# shuffle=False,
# collate_fn=lambda x: x,
# )
# return torch_dataloader, processor, template
# class TestDataLoaderNonPackNonDynamic:
# """Test case a) non pack + non dynamic."""
# def test_basic_functionality(self):
# """Test DataLoader without packing and without dynamic batching."""
# # Create real dataset
# torch_dataloader, processor, template = create_real_dataset(max_samples=80, batch_size=8)
# # Create collator (non-packing)
# collator = DefaultCollator(processor=processor, template=template)
# # Create DataLoader without batching_queue (non-dynamic)
# data_loader = DataLoader(
# dataloader=torch_dataloader,
# collate_fn=collator,
# num_micro_batch=1,
# batching_queue=None,
# )
# # Iterate and check results
# batches = list(iter(data_loader))
# assert len(batches) > 0
# # Check first batch
# one_batch = batches[0]
# micro_batches = one_batch[0]
# assert "input_ids" in micro_batches
# assert "attention_mask" in micro_batches
# assert "labels" in micro_batches
# assert micro_batches["input_ids"].shape[0] == 1 # batch_size=1
# assert micro_batches["input_ids"].ndim == 2 # [batch_size, seq_len]
# class TestDataLoaderNonPackDynamic:
# """Test case b) non pack + dynamic."""
# def test_basic_functionality(self):
# """Test DataLoader without packing but with dynamic batching."""
# # Create real dataset
# torch_dataloader, processor, template = create_real_dataset(max_samples=80, batch_size=8)
# collator = DefaultCollator(processor=processor, template=template)
# # Create batching queue for dynamic batching
# batching_queue = TextBatchingQueue(
# token_micro_bsz=120,
# buffer_size=8,
# )
# data_loader = DataLoader(
# dataloader=torch_dataloader,
# collate_fn=collator,
# num_micro_batch=4,
# batching_queue=batching_queue,
# )
# # Iterate and check
# batches = list(iter(data_loader))
# micro_batch_tokens_first = [micro_batch["attention_mask"].sum() for micro_batch in batches[0]]
# assert all(num_tokens <= 120 for num_tokens in micro_batch_tokens_first)
# assert len(batches) > 0

View File

@@ -184,6 +184,40 @@ def test_qwen3_nothink_rendering_remote(num_samples: int):
assert v1_inputs["input_ids"][: len(prefix)] == prefix
def test_process_sft_samples():
tokenizer: Processor = AutoTokenizer.from_pretrained("llamafactory/tiny-random-qwen3")
renderer = Renderer(template="chatml", processor=tokenizer)
hf_inputs = tokenizer.apply_chat_template(HF_MESSAGES)
samples = [{"messages": V1_MESSAGES, "extra_info": "test", "_dataset_name": "default"}]
model_inputs = renderer.process_samples(samples)
assert len(model_inputs) == 1
assert model_inputs[0]["input_ids"] == hf_inputs
assert model_inputs[0]["extra_info"] == "test"
assert model_inputs[0]["_dataset_name"] == "default"
def test_process_dpo_samples():
tokenizer: Processor = AutoTokenizer.from_pretrained("llamafactory/tiny-random-qwen3")
renderer = Renderer(template="chatml", processor=tokenizer)
hf_inputs = tokenizer.apply_chat_template(HF_MESSAGES)
samples = [
{
"chosen_messages": V1_MESSAGES,
"rejected_messages": V1_MESSAGES,
"extra_info": "test",
"_dataset_name": "default",
}
]
model_inputs = renderer.process_samples(samples)
assert len(model_inputs) == 1
assert model_inputs[0]["input_ids"] == hf_inputs * 2
assert model_inputs[0]["token_type_ids"] == [0] * len(hf_inputs) + [1] * len(hf_inputs)
assert model_inputs[0]["extra_info"] == "test"
assert model_inputs[0]["_dataset_name"] == "default"
if __name__ == "__main__":
test_chatml_rendering()
test_chatml_parse()
@@ -191,3 +225,5 @@ if __name__ == "__main__":
test_qwen3_nothink_rendering()
test_qwen3_nothink_parse()
test_qwen3_nothink_rendering_remote(16)
test_process_sft_samples()
test_process_dpo_samples()