mirror of
https://github.com/hiyouga/LLaMA-Factory.git
synced 2025-12-16 11:50:35 +08:00
support unsloth generate
This commit is contained in:
@@ -7,10 +7,11 @@ from transformers.integrations import is_deepspeed_zero3_enabled
|
||||
from ..extras.logging import get_logger
|
||||
from .utils.misc import find_all_linear_modules, find_expanded_modules
|
||||
from .utils.quantization import QuantizationMethod
|
||||
from .utils.unsloth import get_unsloth_peft_model, load_unsloth_peft_model
|
||||
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from transformers.modeling_utils import PreTrainedModel
|
||||
from transformers import PretrainedConfig, PreTrainedModel
|
||||
|
||||
from ..hparams import FinetuningArguments, ModelArguments
|
||||
|
||||
@@ -19,7 +20,11 @@ logger = get_logger(__name__)
|
||||
|
||||
|
||||
def init_adapter(
|
||||
model: "PreTrainedModel", model_args: "ModelArguments", finetuning_args: "FinetuningArguments", is_trainable: bool
|
||||
config: "PretrainedConfig",
|
||||
model: "PreTrainedModel",
|
||||
model_args: "ModelArguments",
|
||||
finetuning_args: "FinetuningArguments",
|
||||
is_trainable: bool,
|
||||
) -> "PreTrainedModel":
|
||||
r"""
|
||||
Initializes the adapters.
|
||||
@@ -106,6 +111,10 @@ def init_adapter(
|
||||
assert len(model_args.adapter_name_or_path) == 1, "Cannot use multiple adapters in DeepSpeed ZeRO-3."
|
||||
is_mergeable = False
|
||||
|
||||
if model_args.use_unsloth:
|
||||
assert len(model_args.adapter_name_or_path) == 1, "Unsloth model only accepts a single adapter."
|
||||
is_mergeable = False
|
||||
|
||||
if (is_trainable and not finetuning_args.create_new_adapter) or (not is_mergeable):
|
||||
adapter_to_merge = model_args.adapter_name_or_path[:-1]
|
||||
adapter_to_resume = model_args.adapter_name_or_path[-1]
|
||||
@@ -122,9 +131,15 @@ def init_adapter(
|
||||
logger.info("Merged {} adapter(s).".format(len(adapter_to_merge)))
|
||||
|
||||
if adapter_to_resume is not None: # resume lora training
|
||||
model = PeftModel.from_pretrained(
|
||||
model, adapter_to_resume, is_trainable=is_trainable, offload_folder=model_args.offload_folder
|
||||
)
|
||||
if model_args.use_unsloth:
|
||||
model = load_unsloth_peft_model(config, model_args, is_trainable=is_trainable)
|
||||
else:
|
||||
model = PeftModel.from_pretrained(
|
||||
model,
|
||||
adapter_to_resume,
|
||||
is_trainable=is_trainable,
|
||||
offload_folder=model_args.offload_folder,
|
||||
)
|
||||
|
||||
if is_trainable and adapter_to_resume is None: # create new lora weights while training
|
||||
if len(finetuning_args.lora_target) == 1 and finetuning_args.lora_target[0] == "all":
|
||||
@@ -152,14 +167,8 @@ def init_adapter(
|
||||
}
|
||||
|
||||
if model_args.use_unsloth:
|
||||
from unsloth import FastLanguageModel # type: ignore
|
||||
|
||||
unsloth_peft_kwargs = {
|
||||
"model": model,
|
||||
"max_seq_length": model_args.model_max_length,
|
||||
"use_gradient_checkpointing": "unsloth",
|
||||
}
|
||||
model = FastLanguageModel.get_peft_model(**peft_kwargs, **unsloth_peft_kwargs)
|
||||
print(model)
|
||||
model = get_unsloth_peft_model(model, model_args, peft_kwargs)
|
||||
else:
|
||||
lora_config = LoraConfig(
|
||||
task_type=TaskType.CAUSAL_LM,
|
||||
|
||||
Reference in New Issue
Block a user