mirror of
https://github.com/hiyouga/LLaMA-Factory.git
synced 2025-08-23 22:32:54 +08:00
fix: rename optimzer to optimizer
Former-commit-id: 40908a36fae3393715f75156867c11e6373fabad
This commit is contained in:
parent
1cc927b536
commit
b0d32b2041
@ -29,7 +29,7 @@ from trl.trainer import disable_dropout_in_model
|
|||||||
|
|
||||||
from ...extras.constants import IGNORE_INDEX
|
from ...extras.constants import IGNORE_INDEX
|
||||||
from ..callbacks import PissaConvertCallback, SaveProcessorCallback
|
from ..callbacks import PissaConvertCallback, SaveProcessorCallback
|
||||||
from ..trainer_utils import create_custom_optimzer, create_custom_scheduler, get_batch_logps
|
from ..trainer_utils import create_custom_optimizer, create_custom_scheduler, get_batch_logps
|
||||||
|
|
||||||
|
|
||||||
if TYPE_CHECKING:
|
if TYPE_CHECKING:
|
||||||
@ -106,7 +106,7 @@ class CustomDPOTrainer(DPOTrainer):
|
|||||||
|
|
||||||
def create_optimizer(self) -> "torch.optim.Optimizer":
|
def create_optimizer(self) -> "torch.optim.Optimizer":
|
||||||
if self.optimizer is None:
|
if self.optimizer is None:
|
||||||
self.optimizer = create_custom_optimzer(self.model, self.args, self.finetuning_args)
|
self.optimizer = create_custom_optimizer(self.model, self.args, self.finetuning_args)
|
||||||
return super().create_optimizer()
|
return super().create_optimizer()
|
||||||
|
|
||||||
def create_scheduler(
|
def create_scheduler(
|
||||||
|
@ -28,7 +28,7 @@ from trl.trainer import disable_dropout_in_model
|
|||||||
|
|
||||||
from ...extras.constants import IGNORE_INDEX
|
from ...extras.constants import IGNORE_INDEX
|
||||||
from ..callbacks import SaveProcessorCallback
|
from ..callbacks import SaveProcessorCallback
|
||||||
from ..trainer_utils import create_custom_optimzer, create_custom_scheduler, get_batch_logps
|
from ..trainer_utils import create_custom_optimizer, create_custom_scheduler, get_batch_logps
|
||||||
|
|
||||||
|
|
||||||
if TYPE_CHECKING:
|
if TYPE_CHECKING:
|
||||||
@ -101,7 +101,7 @@ class CustomKTOTrainer(KTOTrainer):
|
|||||||
|
|
||||||
def create_optimizer(self) -> "torch.optim.Optimizer":
|
def create_optimizer(self) -> "torch.optim.Optimizer":
|
||||||
if self.optimizer is None:
|
if self.optimizer is None:
|
||||||
self.optimizer = create_custom_optimzer(self.model, self.args, self.finetuning_args)
|
self.optimizer = create_custom_optimizer(self.model, self.args, self.finetuning_args)
|
||||||
return super().create_optimizer()
|
return super().create_optimizer()
|
||||||
|
|
||||||
def create_scheduler(
|
def create_scheduler(
|
||||||
|
@ -39,7 +39,7 @@ from trl.models.utils import unwrap_model_for_generation
|
|||||||
from ...extras.logging import get_logger
|
from ...extras.logging import get_logger
|
||||||
from ...extras.misc import AverageMeter, count_parameters, get_current_device, get_logits_processor
|
from ...extras.misc import AverageMeter, count_parameters, get_current_device, get_logits_processor
|
||||||
from ..callbacks import FixValueHeadModelCallback, SaveProcessorCallback
|
from ..callbacks import FixValueHeadModelCallback, SaveProcessorCallback
|
||||||
from ..trainer_utils import create_custom_optimzer, create_custom_scheduler
|
from ..trainer_utils import create_custom_optimizer, create_custom_scheduler
|
||||||
from .ppo_utils import dump_layernorm, get_rewards_from_server, replace_model, restore_layernorm
|
from .ppo_utils import dump_layernorm, get_rewards_from_server, replace_model, restore_layernorm
|
||||||
|
|
||||||
|
|
||||||
@ -303,7 +303,7 @@ class CustomPPOTrainer(PPOTrainer, Trainer):
|
|||||||
training_args: "Seq2SeqTrainingArguments",
|
training_args: "Seq2SeqTrainingArguments",
|
||||||
finetuning_args: "FinetuningArguments",
|
finetuning_args: "FinetuningArguments",
|
||||||
) -> "torch.optim.Optimizer":
|
) -> "torch.optim.Optimizer":
|
||||||
optimizer = create_custom_optimzer(model, training_args, finetuning_args)
|
optimizer = create_custom_optimizer(model, training_args, finetuning_args)
|
||||||
if optimizer is None:
|
if optimizer is None:
|
||||||
decay_params, nodecay_params = [], []
|
decay_params, nodecay_params = [], []
|
||||||
decay_param_names = self.get_decay_parameter_names(model)
|
decay_param_names = self.get_decay_parameter_names(model)
|
||||||
|
@ -19,7 +19,7 @@ from transformers import Trainer
|
|||||||
|
|
||||||
from ...extras.logging import get_logger
|
from ...extras.logging import get_logger
|
||||||
from ..callbacks import PissaConvertCallback, SaveProcessorCallback
|
from ..callbacks import PissaConvertCallback, SaveProcessorCallback
|
||||||
from ..trainer_utils import create_custom_optimzer, create_custom_scheduler
|
from ..trainer_utils import create_custom_optimizer, create_custom_scheduler
|
||||||
|
|
||||||
|
|
||||||
if TYPE_CHECKING:
|
if TYPE_CHECKING:
|
||||||
@ -57,7 +57,7 @@ class CustomTrainer(Trainer):
|
|||||||
|
|
||||||
def create_optimizer(self) -> "torch.optim.Optimizer":
|
def create_optimizer(self) -> "torch.optim.Optimizer":
|
||||||
if self.optimizer is None:
|
if self.optimizer is None:
|
||||||
self.optimizer = create_custom_optimzer(self.model, self.args, self.finetuning_args)
|
self.optimizer = create_custom_optimizer(self.model, self.args, self.finetuning_args)
|
||||||
return super().create_optimizer()
|
return super().create_optimizer()
|
||||||
|
|
||||||
def create_scheduler(
|
def create_scheduler(
|
||||||
|
@ -25,7 +25,7 @@ from transformers import Trainer
|
|||||||
|
|
||||||
from ...extras.logging import get_logger
|
from ...extras.logging import get_logger
|
||||||
from ..callbacks import FixValueHeadModelCallback, PissaConvertCallback, SaveProcessorCallback
|
from ..callbacks import FixValueHeadModelCallback, PissaConvertCallback, SaveProcessorCallback
|
||||||
from ..trainer_utils import create_custom_optimzer, create_custom_scheduler
|
from ..trainer_utils import create_custom_optimizer, create_custom_scheduler
|
||||||
|
|
||||||
|
|
||||||
if TYPE_CHECKING:
|
if TYPE_CHECKING:
|
||||||
@ -65,7 +65,7 @@ class PairwiseTrainer(Trainer):
|
|||||||
|
|
||||||
def create_optimizer(self) -> "torch.optim.Optimizer":
|
def create_optimizer(self) -> "torch.optim.Optimizer":
|
||||||
if self.optimizer is None:
|
if self.optimizer is None:
|
||||||
self.optimizer = create_custom_optimzer(self.model, self.args, self.finetuning_args)
|
self.optimizer = create_custom_optimizer(self.model, self.args, self.finetuning_args)
|
||||||
return super().create_optimizer()
|
return super().create_optimizer()
|
||||||
|
|
||||||
def create_scheduler(
|
def create_scheduler(
|
||||||
|
@ -27,7 +27,7 @@ from transformers import Seq2SeqTrainer
|
|||||||
from ...extras.constants import IGNORE_INDEX
|
from ...extras.constants import IGNORE_INDEX
|
||||||
from ...extras.logging import get_logger
|
from ...extras.logging import get_logger
|
||||||
from ..callbacks import PissaConvertCallback, SaveProcessorCallback
|
from ..callbacks import PissaConvertCallback, SaveProcessorCallback
|
||||||
from ..trainer_utils import create_custom_optimzer, create_custom_scheduler
|
from ..trainer_utils import create_custom_optimizer, create_custom_scheduler
|
||||||
|
|
||||||
|
|
||||||
if TYPE_CHECKING:
|
if TYPE_CHECKING:
|
||||||
@ -66,7 +66,7 @@ class CustomSeq2SeqTrainer(Seq2SeqTrainer):
|
|||||||
|
|
||||||
def create_optimizer(self) -> "torch.optim.Optimizer":
|
def create_optimizer(self) -> "torch.optim.Optimizer":
|
||||||
if self.optimizer is None:
|
if self.optimizer is None:
|
||||||
self.optimizer = create_custom_optimzer(self.model, self.args, self.finetuning_args)
|
self.optimizer = create_custom_optimizer(self.model, self.args, self.finetuning_args)
|
||||||
return super().create_optimizer()
|
return super().create_optimizer()
|
||||||
|
|
||||||
def create_scheduler(
|
def create_scheduler(
|
||||||
|
@ -366,7 +366,7 @@ def _create_badam_optimizer(
|
|||||||
return optimizer
|
return optimizer
|
||||||
|
|
||||||
|
|
||||||
def create_custom_optimzer(
|
def create_custom_optimizer(
|
||||||
model: "PreTrainedModel",
|
model: "PreTrainedModel",
|
||||||
training_args: "Seq2SeqTrainingArguments",
|
training_args: "Seq2SeqTrainingArguments",
|
||||||
finetuning_args: "FinetuningArguments",
|
finetuning_args: "FinetuningArguments",
|
||||||
|
Loading…
x
Reference in New Issue
Block a user