fix llava config

This commit is contained in:
hiyouga
2024-05-12 00:02:49 +08:00
parent 5da097f406
commit b033232aea
5 changed files with 15 additions and 15 deletions

View File

@@ -15,8 +15,8 @@ from .utils.longlora import configure_longlora
from .utils.moe import add_z3_leaf_module, configure_moe
from .utils.quantization import configure_quantization
from .utils.rope import configure_rope
from .utils.valuehead import configure_valuehead, prepare_valuehead_model
from .utils.visual import autocast_projector_dtype
from .utils.valuehead import prepare_valuehead_model
from .utils.visual import autocast_projector_dtype, configure_hidden_size
if TYPE_CHECKING:
@@ -40,7 +40,6 @@ def patch_config(
model_args: "ModelArguments",
init_kwargs: Dict[str, Any],
is_trainable: bool,
add_valuehead: bool,
) -> None:
if model_args.compute_dtype is None: # priority: bf16 > fp16 > fp32
model_args.compute_dtype = infer_optim_dtype(model_dtype=getattr(config, "torch_dtype", None))
@@ -50,9 +49,7 @@ def patch_config(
configure_longlora(config, model_args, is_trainable)
configure_quantization(config, tokenizer, model_args, init_kwargs)
configure_moe(config, model_args, is_trainable)
if add_valuehead:
configure_valuehead(config)
configure_hidden_size(config)
if model_args.use_cache and not is_trainable:
setattr(config, "use_cache", True)