mirror of
https://github.com/hiyouga/LLaMA-Factory.git
synced 2025-08-22 13:42:51 +08:00
fix ds optimizer
Former-commit-id: 3bcd41b639899e72bcabc51d59bac8967af19899
This commit is contained in:
parent
300437a5e9
commit
ae9ad13f2a
@ -64,10 +64,10 @@ class CustomDPOTrainer(DPOTrainer):
|
||||
self.ref_model = self.accelerator.prepare_model(self.ref_model, evaluation_mode=True)
|
||||
|
||||
def create_optimizer_and_scheduler(self, num_training_steps: int) -> None:
|
||||
self.optimizer = create_custom_optimzer(self.model, self.args, self.finetuning_args, num_training_steps)
|
||||
if self.optimizer is None:
|
||||
self.create_optimizer()
|
||||
self.optimizer = create_custom_optimzer(self.model, self.args, self.finetuning_args, num_training_steps)
|
||||
|
||||
self.create_optimizer()
|
||||
self.create_scheduler(num_training_steps=num_training_steps, optimizer=self.optimizer)
|
||||
|
||||
def sft_loss(self, chosen_logits: torch.FloatTensor, chosen_labels: torch.LongTensor) -> torch.Tensor:
|
||||
|
@ -23,8 +23,8 @@ class CustomTrainer(Trainer):
|
||||
self.finetuning_args = finetuning_args
|
||||
|
||||
def create_optimizer_and_scheduler(self, num_training_steps: int) -> None:
|
||||
self.optimizer = create_custom_optimzer(self.model, self.args, self.finetuning_args, num_training_steps)
|
||||
if self.optimizer is None:
|
||||
self.create_optimizer()
|
||||
self.optimizer = create_custom_optimzer(self.model, self.args, self.finetuning_args, num_training_steps)
|
||||
|
||||
self.create_optimizer()
|
||||
self.create_scheduler(num_training_steps=num_training_steps, optimizer=self.optimizer)
|
||||
|
@ -30,10 +30,10 @@ class PairwiseTrainer(Trainer):
|
||||
self.can_return_loss = True # override property to return eval_loss
|
||||
|
||||
def create_optimizer_and_scheduler(self, num_training_steps: int) -> None:
|
||||
self.optimizer = create_custom_optimzer(self.model, self.args, self.finetuning_args, num_training_steps)
|
||||
if self.optimizer is None:
|
||||
self.create_optimizer()
|
||||
self.optimizer = create_custom_optimzer(self.model, self.args, self.finetuning_args, num_training_steps)
|
||||
|
||||
self.create_optimizer()
|
||||
self.create_scheduler(num_training_steps=num_training_steps, optimizer=self.optimizer)
|
||||
|
||||
def compute_loss(
|
||||
|
@ -30,10 +30,10 @@ class CustomSeq2SeqTrainer(Seq2SeqTrainer):
|
||||
self.finetuning_args = finetuning_args
|
||||
|
||||
def create_optimizer_and_scheduler(self, num_training_steps: int) -> None:
|
||||
self.optimizer = create_custom_optimzer(self.model, self.args, self.finetuning_args, num_training_steps)
|
||||
if self.optimizer is None:
|
||||
self.create_optimizer()
|
||||
self.optimizer = create_custom_optimzer(self.model, self.args, self.finetuning_args, num_training_steps)
|
||||
|
||||
self.create_optimizer()
|
||||
self.create_scheduler(num_training_steps=num_training_steps, optimizer=self.optimizer)
|
||||
|
||||
def prediction_step(
|
||||
|
Loading…
x
Reference in New Issue
Block a user