modity code structure

Former-commit-id: f751376613
This commit is contained in:
hiyouga
2023-07-15 16:54:28 +08:00
parent 09b52a3078
commit a696148d6b
57 changed files with 1999 additions and 1816 deletions

View File

@@ -0,0 +1 @@
from llmtuner.api.app import create_app

152
src/llmtuner/api/app.py Normal file
View File

@@ -0,0 +1,152 @@
import uvicorn
from threading import Thread
from fastapi import FastAPI, HTTPException
from fastapi.middleware.cors import CORSMiddleware
from transformers import TextIteratorStreamer
from contextlib import asynccontextmanager
from sse_starlette import EventSourceResponse
from typing import Any, Dict
from llmtuner.tuner import get_infer_args, load_model_and_tokenizer
from llmtuner.extras.misc import get_logits_processor, torch_gc
from llmtuner.extras.template import Template
from llmtuner.api.protocol import (
ModelCard,
ModelList,
ChatMessage,
DeltaMessage,
ChatCompletionRequest,
ChatCompletionResponse,
ChatCompletionStreamResponse,
ChatCompletionResponseChoice,
ChatCompletionResponseStreamChoice,
ChatCompletionResponseUsage
)
@asynccontextmanager
async def lifespan(app: FastAPI): # collects GPU memory
yield
torch_gc()
def create_app():
model_args, data_args, finetuning_args, generating_args = get_infer_args()
model, tokenizer = load_model_and_tokenizer(model_args, finetuning_args)
prompt_template = Template(data_args.prompt_template)
source_prefix = data_args.source_prefix if data_args.source_prefix else ""
app = FastAPI(lifespan=lifespan)
app.add_middleware(
CORSMiddleware,
allow_origins=["*"],
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"],
)
@app.get("/v1/models", response_model=ModelList)
async def list_models():
global model_args
model_card = ModelCard(id="gpt-3.5-turbo")
return ModelList(data=[model_card])
@app.post("/v1/chat/completions", response_model=ChatCompletionResponse)
async def create_chat_completion(request: ChatCompletionRequest):
if request.messages[-1].role != "user":
raise HTTPException(status_code=400, detail="Invalid request")
query = request.messages[-1].content
prev_messages = request.messages[:-1]
if len(prev_messages) > 0 and prev_messages[0].role == "system":
prefix = prev_messages.pop(0).content
else:
prefix = source_prefix
history = []
if len(prev_messages) % 2 == 0:
for i in range(0, len(prev_messages), 2):
if prev_messages[i].role == "user" and prev_messages[i+1].role == "assistant":
history.append([prev_messages[i].content, prev_messages[i+1].content])
inputs = tokenizer([prompt_template.get_prompt(query, history, prefix)], return_tensors="pt")
inputs = inputs.to(model.device)
gen_kwargs = generating_args.to_dict()
gen_kwargs.update({
"input_ids": inputs["input_ids"],
"temperature": request.temperature if request.temperature else gen_kwargs["temperature"],
"top_p": request.top_p if request.top_p else gen_kwargs["top_p"],
"logits_processor": get_logits_processor()
})
if request.max_tokens:
gen_kwargs.pop("max_length", None)
gen_kwargs["max_new_tokens"] = request.max_tokens
if request.stream:
generate = predict(gen_kwargs, request.model)
return EventSourceResponse(generate, media_type="text/event-stream")
generation_output = model.generate(**gen_kwargs)
outputs = generation_output.tolist()[0][len(inputs["input_ids"][0]):]
response = tokenizer.decode(outputs, skip_special_tokens=True)
usage = ChatCompletionResponseUsage(
prompt_tokens=len(inputs["input_ids"][0]),
completion_tokens=len(outputs),
total_tokens=len(inputs["input_ids"][0]) + len(outputs)
)
choice_data = ChatCompletionResponseChoice(
index=0,
message=ChatMessage(role="assistant", content=response),
finish_reason="stop"
)
return ChatCompletionResponse(model=request.model, choices=[choice_data], usage=usage, object="chat.completion")
async def predict(gen_kwargs: Dict[str, Any], model_id: str):
streamer = TextIteratorStreamer(tokenizer, timeout=60.0, skip_prompt=True, skip_special_tokens=True)
gen_kwargs["streamer"] = streamer
thread = Thread(target=model.generate, kwargs=gen_kwargs)
thread.start()
choice_data = ChatCompletionResponseStreamChoice(
index=0,
delta=DeltaMessage(role="assistant"),
finish_reason=None
)
chunk = ChatCompletionStreamResponse(model=model_id, choices=[choice_data], object="chat.completion.chunk")
yield chunk.json(exclude_unset=True, ensure_ascii=False)
for new_text in streamer:
if len(new_text) == 0:
continue
choice_data = ChatCompletionResponseStreamChoice(
index=0,
delta=DeltaMessage(content=new_text),
finish_reason=None
)
chunk = ChatCompletionStreamResponse(model=model_id, choices=[choice_data], object="chat.completion.chunk")
yield chunk.json(exclude_unset=True, ensure_ascii=False)
choice_data = ChatCompletionResponseStreamChoice(
index=0,
delta=DeltaMessage(),
finish_reason="stop"
)
chunk = ChatCompletionStreamResponse(model=model_id, choices=[choice_data], object="chat.completion.chunk")
yield chunk.json(exclude_unset=True, ensure_ascii=False)
yield "[DONE]"
return app
if __name__ == "__main__":
app = create_app()
uvicorn.run(app, host="0.0.0.0", port=8000, workers=1)

View File

@@ -0,0 +1,73 @@
import time
from pydantic import BaseModel, Field
from typing import List, Literal, Optional
class ModelCard(BaseModel):
id: str
object: Optional[str] = "model"
created: Optional[int] = Field(default_factory=lambda: int(time.time()))
owned_by: Optional[str] = "owner"
root: Optional[str] = None
parent: Optional[str] = None
permission: Optional[list] = []
class ModelList(BaseModel):
object: Optional[str] = "list"
data: Optional[List[ModelCard]] = []
class ChatMessage(BaseModel):
role: Literal["user", "assistant", "system"]
content: str
class DeltaMessage(BaseModel):
role: Optional[Literal["user", "assistant", "system"]] = None
content: Optional[str] = None
class ChatCompletionRequest(BaseModel):
model: str
messages: List[ChatMessage]
temperature: Optional[float] = None
top_p: Optional[float] = None
n: Optional[int] = 1
max_tokens: Optional[int] = None
stream: Optional[bool] = False
class ChatCompletionResponseChoice(BaseModel):
index: int
message: ChatMessage
finish_reason: Literal["stop", "length"]
class ChatCompletionResponseStreamChoice(BaseModel):
index: int
delta: DeltaMessage
finish_reason: Optional[Literal["stop", "length"]] = None
class ChatCompletionResponseUsage(BaseModel):
prompt_tokens: int
completion_tokens: int
total_tokens: int
class ChatCompletionResponse(BaseModel):
id: Optional[str] = "chatcmpl-default"
object: Literal["chat.completion"]
created: Optional[int] = Field(default_factory=lambda: int(time.time()))
model: str
choices: List[ChatCompletionResponseChoice]
usage: ChatCompletionResponseUsage
class ChatCompletionStreamResponse(BaseModel):
id: Optional[str] = "chatcmpl-default"
object: Literal["chat.completion.chunk"]
created: Optional[int] = Field(default_factory=lambda: int(time.time()))
model: str
choices: List[ChatCompletionResponseStreamChoice]