mirror of
https://github.com/hiyouga/LLaMA-Factory.git
synced 2025-09-18 19:12:49 +08:00
fix eval scripts
Former-commit-id: 177604fb6bf09fdfc05216b5f1e5e1c95fcc8d43
This commit is contained in:
parent
9bbb5c846d
commit
a510ea9390
@ -133,25 +133,19 @@ class Ceval(datasets.GeneratorBasedBuilder):
|
|||||||
datasets.SplitGenerator(
|
datasets.SplitGenerator(
|
||||||
name=datasets.Split.TEST,
|
name=datasets.Split.TEST,
|
||||||
gen_kwargs={
|
gen_kwargs={
|
||||||
"filepath": os.path.join(
|
"filepath": os.path.join(data_dir, "test", f"{task_name}_test.csv"),
|
||||||
data_dir, "test", f"{task_name}_test.csv"
|
|
||||||
),
|
|
||||||
},
|
},
|
||||||
),
|
),
|
||||||
datasets.SplitGenerator(
|
datasets.SplitGenerator(
|
||||||
name=datasets.Split.VALIDATION,
|
name=datasets.Split.VALIDATION,
|
||||||
gen_kwargs={
|
gen_kwargs={
|
||||||
"filepath": os.path.join(
|
"filepath": os.path.join(data_dir, "val", f"{task_name}_val.csv"),
|
||||||
data_dir, "val", f"{task_name}_val.csv"
|
|
||||||
),
|
|
||||||
},
|
},
|
||||||
),
|
),
|
||||||
datasets.SplitGenerator(
|
datasets.SplitGenerator(
|
||||||
name=datasets.Split.TRAIN,
|
name=datasets.Split.TRAIN,
|
||||||
gen_kwargs={
|
gen_kwargs={
|
||||||
"filepath": os.path.join(
|
"filepath": os.path.join(data_dir, "dev", f"{task_name}_dev.csv"),
|
||||||
data_dir, "dev", f"{task_name}_dev.csv"
|
|
||||||
),
|
|
||||||
},
|
},
|
||||||
),
|
),
|
||||||
]
|
]
|
||||||
|
@ -37,73 +37,73 @@ _LICENSE = "Creative Commons Attribution-NonCommercial-ShareAlike 4.0 Internatio
|
|||||||
_URL = "cmmlu.zip"
|
_URL = "cmmlu.zip"
|
||||||
|
|
||||||
task_list = [
|
task_list = [
|
||||||
'agronomy',
|
"agronomy",
|
||||||
'anatomy',
|
"anatomy",
|
||||||
'ancient_chinese',
|
"ancient_chinese",
|
||||||
'arts',
|
"arts",
|
||||||
'astronomy',
|
"astronomy",
|
||||||
'business_ethics',
|
"business_ethics",
|
||||||
'chinese_civil_service_exam',
|
"chinese_civil_service_exam",
|
||||||
'chinese_driving_rule',
|
"chinese_driving_rule",
|
||||||
'chinese_food_culture',
|
"chinese_food_culture",
|
||||||
'chinese_foreign_policy',
|
"chinese_foreign_policy",
|
||||||
'chinese_history',
|
"chinese_history",
|
||||||
'chinese_literature',
|
"chinese_literature",
|
||||||
'chinese_teacher_qualification',
|
"chinese_teacher_qualification",
|
||||||
'clinical_knowledge',
|
"clinical_knowledge",
|
||||||
'college_actuarial_science',
|
"college_actuarial_science",
|
||||||
'college_education',
|
"college_education",
|
||||||
'college_engineering_hydrology',
|
"college_engineering_hydrology",
|
||||||
'college_law',
|
"college_law",
|
||||||
'college_mathematics',
|
"college_mathematics",
|
||||||
'college_medical_statistics',
|
"college_medical_statistics",
|
||||||
'college_medicine',
|
"college_medicine",
|
||||||
'computer_science',
|
"computer_science",
|
||||||
'computer_security',
|
"computer_security",
|
||||||
'conceptual_physics',
|
"conceptual_physics",
|
||||||
'construction_project_management',
|
"construction_project_management",
|
||||||
'economics',
|
"economics",
|
||||||
'education',
|
"education",
|
||||||
'electrical_engineering',
|
"electrical_engineering",
|
||||||
'elementary_chinese',
|
"elementary_chinese",
|
||||||
'elementary_commonsense',
|
"elementary_commonsense",
|
||||||
'elementary_information_and_technology',
|
"elementary_information_and_technology",
|
||||||
'elementary_mathematics',
|
"elementary_mathematics",
|
||||||
'ethnology',
|
"ethnology",
|
||||||
'food_science',
|
"food_science",
|
||||||
'genetics',
|
"genetics",
|
||||||
'global_facts',
|
"global_facts",
|
||||||
'high_school_biology',
|
"high_school_biology",
|
||||||
'high_school_chemistry',
|
"high_school_chemistry",
|
||||||
'high_school_geography',
|
"high_school_geography",
|
||||||
'high_school_mathematics',
|
"high_school_mathematics",
|
||||||
'high_school_physics',
|
"high_school_physics",
|
||||||
'high_school_politics',
|
"high_school_politics",
|
||||||
'human_sexuality',
|
"human_sexuality",
|
||||||
'international_law',
|
"international_law",
|
||||||
'journalism',
|
"journalism",
|
||||||
'jurisprudence',
|
"jurisprudence",
|
||||||
'legal_and_moral_basis',
|
"legal_and_moral_basis",
|
||||||
'logical',
|
"logical",
|
||||||
'machine_learning',
|
"machine_learning",
|
||||||
'management',
|
"management",
|
||||||
'marketing',
|
"marketing",
|
||||||
'marxist_theory',
|
"marxist_theory",
|
||||||
'modern_chinese',
|
"modern_chinese",
|
||||||
'nutrition',
|
"nutrition",
|
||||||
'philosophy',
|
"philosophy",
|
||||||
'professional_accounting',
|
"professional_accounting",
|
||||||
'professional_law',
|
"professional_law",
|
||||||
'professional_medicine',
|
"professional_medicine",
|
||||||
'professional_psychology',
|
"professional_psychology",
|
||||||
'public_relations',
|
"public_relations",
|
||||||
'security_study',
|
"security_study",
|
||||||
'sociology',
|
"sociology",
|
||||||
'sports_science',
|
"sports_science",
|
||||||
'traditional_chinese_medicine',
|
"traditional_chinese_medicine",
|
||||||
'virology',
|
"virology",
|
||||||
'world_history',
|
"world_history",
|
||||||
'world_religions',
|
"world_religions",
|
||||||
]
|
]
|
||||||
|
|
||||||
|
|
||||||
|
@ -136,25 +136,19 @@ class MMLU(datasets.GeneratorBasedBuilder):
|
|||||||
datasets.SplitGenerator(
|
datasets.SplitGenerator(
|
||||||
name=datasets.Split.TEST,
|
name=datasets.Split.TEST,
|
||||||
gen_kwargs={
|
gen_kwargs={
|
||||||
"filepath": os.path.join(
|
"filepath": os.path.join(data_dir, "data", "test", f"{task_name}_test.csv"),
|
||||||
data_dir, "data", "test", f"{task_name}_test.csv"
|
|
||||||
),
|
|
||||||
},
|
},
|
||||||
),
|
),
|
||||||
datasets.SplitGenerator(
|
datasets.SplitGenerator(
|
||||||
name=datasets.Split.VALIDATION,
|
name=datasets.Split.VALIDATION,
|
||||||
gen_kwargs={
|
gen_kwargs={
|
||||||
"filepath": os.path.join(
|
"filepath": os.path.join(data_dir, "data", "val", f"{task_name}_val.csv"),
|
||||||
data_dir, "data", "val", f"{task_name}_val.csv"
|
|
||||||
),
|
|
||||||
},
|
},
|
||||||
),
|
),
|
||||||
datasets.SplitGenerator(
|
datasets.SplitGenerator(
|
||||||
name=datasets.Split.TRAIN,
|
name=datasets.Split.TRAIN,
|
||||||
gen_kwargs={
|
gen_kwargs={
|
||||||
"filepath": os.path.join(
|
"filepath": os.path.join(data_dir, "data", "dev", f"{task_name}_dev.csv"),
|
||||||
data_dir, "data", "dev", f"{task_name}_dev.csv"
|
|
||||||
),
|
|
||||||
},
|
},
|
||||||
),
|
),
|
||||||
]
|
]
|
||||||
|
Loading…
x
Reference in New Issue
Block a user