add test cases

Former-commit-id: b27269bd2b
This commit is contained in:
hiyouga
2024-06-15 04:05:54 +08:00
parent d4ce280fbc
commit a3f4925c2c
9 changed files with 184 additions and 34 deletions

View File

@@ -52,7 +52,7 @@ class VllmEngine(BaseEngine):
"model": model_args.model_name_or_path,
"trust_remote_code": True,
"download_dir": model_args.cache_dir,
"dtype": model_args.vllm_dtype,
"dtype": model_args.infer_dtype,
"max_model_len": model_args.vllm_maxlen,
"tensor_parallel_size": get_device_count() or 1,
"gpu_memory_utilization": model_args.vllm_gpu_util,

View File

@@ -136,10 +136,6 @@ class ModelArguments:
default=8,
metadata={"help": "Maximum rank of all LoRAs in the vLLM engine."},
)
vllm_dtype: Literal["auto", "float16", "bfloat16", "float32"] = field(
default="auto",
metadata={"help": "Data type for model weights and activations in the vLLM engine."},
)
offload_folder: str = field(
default="offload",
metadata={"help": "Path to offload model weights."},
@@ -148,6 +144,10 @@ class ModelArguments:
default=True,
metadata={"help": "Whether or not to use KV cache in generation."},
)
infer_dtype: Literal["auto", "float16", "bfloat16", "float32"] = field(
default="auto",
metadata={"help": "Data type for model weights and activations at inference."}
)
hf_hub_token: Optional[str] = field(
default=None,
metadata={"help": "Auth token to log in with Hugging Face Hub."},

View File

@@ -25,8 +25,12 @@ def _setup_full_tuning(
model: "PreTrainedModel",
model_args: "ModelArguments",
finetuning_args: "FinetuningArguments",
is_trainable: bool,
cast_trainable_params_to_fp32: bool,
) -> None:
if not is_trainable:
return
logger.info("Fine-tuning method: Full")
forbidden_modules = set()
if model_args.visual_inputs and finetuning_args.freeze_vision_tower:
@@ -47,8 +51,12 @@ def _setup_freeze_tuning(
model: "PreTrainedModel",
model_args: "ModelArguments",
finetuning_args: "FinetuningArguments",
is_trainable: bool,
cast_trainable_params_to_fp32: bool,
) -> None:
if not is_trainable:
return
logger.info("Fine-tuning method: Freeze")
if model_args.visual_inputs:
config = model.config.text_config
@@ -132,7 +140,9 @@ def _setup_lora_tuning(
is_trainable: bool,
cast_trainable_params_to_fp32: bool,
) -> "PeftModel":
logger.info("Fine-tuning method: {}".format("DoRA" if finetuning_args.use_dora else "LoRA"))
if is_trainable:
logger.info("Fine-tuning method: {}".format("DoRA" if finetuning_args.use_dora else "LoRA"))
adapter_to_resume = None
if model_args.adapter_name_or_path is not None:
@@ -173,6 +183,8 @@ def _setup_lora_tuning(
offload_folder=model_args.offload_folder,
)
logger.info("Loaded adapter(s): {}".format(",".join(model_args.adapter_name_or_path)))
if is_trainable and adapter_to_resume is None: # create new lora weights while training
if len(finetuning_args.lora_target) == 1 and finetuning_args.lora_target[0] == "all":
target_modules = find_all_linear_modules(model, finetuning_args.freeze_vision_tower)
@@ -227,9 +239,6 @@ def _setup_lora_tuning(
for param in filter(lambda p: p.requires_grad, model.parameters()):
param.data = param.data.to(torch.float32)
if model_args.adapter_name_or_path is not None:
logger.info("Loaded adapter(s): {}".format(",".join(model_args.adapter_name_or_path)))
return model
@@ -247,29 +256,27 @@ def init_adapter(
Note that the trainable parameters must be cast to float32.
"""
if (not is_trainable) and model_args.adapter_name_or_path is None:
logger.info("Adapter is not found at evaluation, load the base model.")
return model
if is_trainable and getattr(model, "quantization_method", None) and finetuning_args.finetuning_type != "lora":
raise ValueError("Quantized models can only be used for the LoRA tuning.")
if finetuning_args.finetuning_type != "lora" and getattr(model, "quantization_method", None):
raise ValueError("You can only use lora for quantized models.")
if is_deepspeed_zero3_enabled() or is_fsdp_enabled() or finetuning_args.pure_bf16 or finetuning_args.use_badam:
if not is_trainable:
cast_trainable_params_to_fp32 = False
elif is_deepspeed_zero3_enabled() or is_fsdp_enabled() or finetuning_args.pure_bf16 or finetuning_args.use_badam:
logger.info("ZeRO3/FSDP/PureBF16/BAdam detected, remaining trainable params as their original precision.")
cast_trainable_params_to_fp32 = False
else:
logger.info("Upcasting trainable params to float32.")
cast_trainable_params_to_fp32 = True
if is_trainable and finetuning_args.finetuning_type == "full":
_setup_full_tuning(model, model_args, finetuning_args, cast_trainable_params_to_fp32)
if is_trainable and finetuning_args.finetuning_type == "freeze":
_setup_freeze_tuning(model, model_args, finetuning_args, cast_trainable_params_to_fp32)
if finetuning_args.finetuning_type == "lora":
if finetuning_args.finetuning_type == "full":
_setup_full_tuning(model, model_args, finetuning_args, is_trainable, cast_trainable_params_to_fp32)
elif finetuning_args.finetuning_type == "freeze":
_setup_freeze_tuning(model, model_args, finetuning_args, is_trainable, cast_trainable_params_to_fp32)
elif finetuning_args.finetuning_type == "lora":
model = _setup_lora_tuning(
config, model, model_args, finetuning_args, is_trainable, cast_trainable_params_to_fp32
)
else:
raise NotImplementedError("Unknown finetuning type: {}.".format(finetuning_args.finetuning_type))
return model

View File

@@ -44,7 +44,10 @@ def patch_config(
is_trainable: bool,
) -> None:
if model_args.compute_dtype is None: # priority: bf16 > fp16 > fp32
model_args.compute_dtype = infer_optim_dtype(model_dtype=getattr(config, "torch_dtype", None))
if model_args.infer_dtype == "auto":
model_args.compute_dtype = infer_optim_dtype(model_dtype=getattr(config, "torch_dtype", None))
else:
model_args.compute_dtype = getattr(torch, model_args.infer_dtype)
if is_torch_npu_available():
use_jit_compile = os.environ.get("JIT_COMPILE", "0").lower() in ["true", "1"]

View File

@@ -135,8 +135,7 @@ class CustomPPOTrainer(PPOTrainer, Trainer):
unwrapped_model: "AutoModelForCausalLMWithValueHead" = self.accelerator.unwrap_model(self.model)
self.is_chatglm_model = getattr(unwrapped_model.config, "model_type", None) == "chatglm"
device_type = unwrapped_model.pretrained_model.device.type
self.amp_context = torch.autocast(device_type, dtype=model_args.compute_dtype)
self.amp_context = torch.autocast(self.current_device.type, dtype=self.model_args.compute_dtype)
warnings.simplefilter("ignore") # remove gc warnings on ref model
if finetuning_args.reward_model_type == "full":