[model] add qwen3 nothink (#8869)

This commit is contained in:
Yaowei Zheng 2025-08-11 23:17:32 +08:00 committed by GitHub
parent 8efa5c9694
commit a0e9a36a6f
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
6 changed files with 47 additions and 18 deletions

View File

@ -101,6 +101,7 @@ Choose your path:
## Blogs ## Blogs
- [Fine-tune GPT-OSS for Role-Playing using LLaMA-Factory](https://docs.llamafactory.com.cn/docs/documents/best-practice/gptoss/?utm_source=LLaMA-Factory) (Chinese)
- [Fine-tune Llama3.1-70B for Medical Diagnosis using LLaMA-Factory](https://docs.alayanew.com/docs/documents/bestPractice/bigModel/llama70B/?utm_source=LLaMA-Factory) (Chinese) - [Fine-tune Llama3.1-70B for Medical Diagnosis using LLaMA-Factory](https://docs.alayanew.com/docs/documents/bestPractice/bigModel/llama70B/?utm_source=LLaMA-Factory) (Chinese)
- [A One-Stop Code-Free Model Reinforcement Learning and Deployment Platform based on LLaMA-Factory and EasyR1](https://aws.amazon.com/cn/blogs/china/building-llm-model-hub-based-on-llamafactory-and-easyr1/) (Chinese) - [A One-Stop Code-Free Model Reinforcement Learning and Deployment Platform based on LLaMA-Factory and EasyR1](https://aws.amazon.com/cn/blogs/china/building-llm-model-hub-based-on-llamafactory-and-easyr1/) (Chinese)
- [How Apoidea Group enhances visual information extraction from banking documents with multimodal models using LLaMA-Factory on Amazon SageMaker HyperPod](https://aws.amazon.com/cn/blogs/machine-learning/how-apoidea-group-enhances-visual-information-extraction-from-banking-documents-with-multimodal-models-using-llama-factory-on-amazon-sagemaker-hyperpod/) (English) - [How Apoidea Group enhances visual information extraction from banking documents with multimodal models using LLaMA-Factory on Amazon SageMaker HyperPod](https://aws.amazon.com/cn/blogs/machine-learning/how-apoidea-group-enhances-visual-information-extraction-from-banking-documents-with-multimodal-models-using-llama-factory-on-amazon-sagemaker-hyperpod/) (English)

View File

@ -103,6 +103,7 @@ https://github.com/user-attachments/assets/43b700c6-a178-41db-b1f8-8190a5d3fcfc
## 官方博客 ## 官方博客
- [使用 LLaMA-Factory 构建 GPT-OSS 角色扮演模型](https://docs.llamafactory.com.cn/docs/documents/best-practice/gptoss/?utm_source=LLaMA-Factory)(中文)
- [使用 LLaMA-Factory 微调 Llama3.1-70B 医学诊断模型](https://docs.alayanew.com/docs/documents/bestPractice/bigModel/llama70B/?utm_source=LLaMA-Factory)(中文) - [使用 LLaMA-Factory 微调 Llama3.1-70B 医学诊断模型](https://docs.alayanew.com/docs/documents/bestPractice/bigModel/llama70B/?utm_source=LLaMA-Factory)(中文)
- [基于 LLaMA-Factory 和 EasyR1 打造一站式无代码大模型强化学习和部署平台 LLM Model Hub](https://aws.amazon.com/cn/blogs/china/building-llm-model-hub-based-on-llamafactory-and-easyr1/)(中文) - [基于 LLaMA-Factory 和 EasyR1 打造一站式无代码大模型强化学习和部署平台 LLM Model Hub](https://aws.amazon.com/cn/blogs/china/building-llm-model-hub-based-on-llamafactory-and-easyr1/)(中文)
- [通过亚马逊 SageMaker HyperPod 上的 LLaMA-Factory 增强多模态模型银行文档的视觉信息提取](https://aws.amazon.com/cn/blogs/machine-learning/how-apoidea-group-enhances-visual-information-extraction-from-banking-documents-with-multimodal-models-using-llama-factory-on-amazon-sagemaker-hyperpod/)(英文) - [通过亚马逊 SageMaker HyperPod 上的 LLaMA-Factory 增强多模态模型银行文档的视觉信息提取](https://aws.amazon.com/cn/blogs/machine-learning/how-apoidea-group-enhances-visual-information-extraction-from-banking-documents-with-multimodal-models-using-llama-factory-on-amazon-sagemaker-hyperpod/)(英文)

View File

@ -96,7 +96,7 @@ class Template:
def add_thought(self, content: str = "") -> str: def add_thought(self, content: str = "") -> str:
r"""Add empty thought to assistant message.""" r"""Add empty thought to assistant message."""
return f"{self.thought_words[0]}\n\n{self.thought_words[1]}\n\n" + content return f"{self.thought_words[0]}{self.thought_words[1]}" + content
def remove_thought(self, content: str) -> str: def remove_thought(self, content: str) -> str:
r"""Remove thought from assistant message.""" r"""Remove thought from assistant message."""
@ -518,7 +518,7 @@ def register_template(
format_prefix=format_prefix or default_prefix_formatter, format_prefix=format_prefix or default_prefix_formatter,
default_system=default_system, default_system=default_system,
stop_words=stop_words or [], stop_words=stop_words or [],
thought_words=thought_words or ("<think>", "</think>"), thought_words=thought_words or ("<think>\n", "\n</think>\n\n"),
efficient_eos=efficient_eos, efficient_eos=efficient_eos,
replace_eos=replace_eos, replace_eos=replace_eos,
replace_jinja_template=replace_jinja_template, replace_jinja_template=replace_jinja_template,
@ -579,7 +579,7 @@ def parse_template(tokenizer: "PreTrainedTokenizer") -> "Template":
format_prefix=EmptyFormatter(slots=[prefix]) if prefix else EmptyFormatter(), format_prefix=EmptyFormatter(slots=[prefix]) if prefix else EmptyFormatter(),
default_system=default_system, default_system=default_system,
stop_words=[], stop_words=[],
thought_words=("<think>", "</think>"), thought_words=("<think>\n", "\n</think>\n\n"),
efficient_eos=False, efficient_eos=False,
replace_eos=False, replace_eos=False,
replace_jinja_template=False, replace_jinja_template=False,
@ -1750,6 +1750,22 @@ register_template(
) )
# copied from qwen template
register_template(
name="qwen3_nothink",
format_user=StringFormatter(slots=["<|im_start|>user\n{{content}}<|im_end|>\n<|im_start|>assistant\n"]),
format_assistant=StringFormatter(slots=["{{content}}<|im_end|>\n"]),
format_system=StringFormatter(slots=["<|im_start|>system\n{{content}}<|im_end|>\n"]),
format_function=FunctionFormatter(slots=["{{content}}<|im_end|>\n"], tool_format="qwen"),
format_observation=StringFormatter(
slots=["<|im_start|>user\n<tool_response>\n{{content}}\n</tool_response><|im_end|>\n<|im_start|>assistant\n"]
),
format_tools=ToolFormatter(tool_format="qwen"),
stop_words=["<|im_end|>"],
replace_eos=True,
)
# copied from chatml template # copied from chatml template
register_template( register_template(
name="qwen2_audio", name="qwen2_audio",

View File

@ -2767,10 +2767,6 @@ register_model_group(
DownloadSource.DEFAULT: "Qwen/Qwen3-4B", DownloadSource.DEFAULT: "Qwen/Qwen3-4B",
DownloadSource.MODELSCOPE: "Qwen/Qwen3-4B", DownloadSource.MODELSCOPE: "Qwen/Qwen3-4B",
}, },
"Qwen3-4B-Instruct-2507": {
DownloadSource.DEFAULT: "Qwen/Qwen3-4B-Instruct-2507",
DownloadSource.MODELSCOPE: "Qwen/Qwen3-4B-Instruct-2507",
},
"Qwen3-4B-Thinking-2507": { "Qwen3-4B-Thinking-2507": {
DownloadSource.DEFAULT: "Qwen/Qwen3-4B-Thinking-2507", DownloadSource.DEFAULT: "Qwen/Qwen3-4B-Thinking-2507",
DownloadSource.MODELSCOPE: "Qwen/Qwen3-4B-Thinking-2507", DownloadSource.MODELSCOPE: "Qwen/Qwen3-4B-Thinking-2507",
@ -2791,10 +2787,6 @@ register_model_group(
DownloadSource.DEFAULT: "Qwen/Qwen3-30B-A3B", DownloadSource.DEFAULT: "Qwen/Qwen3-30B-A3B",
DownloadSource.MODELSCOPE: "Qwen/Qwen3-30B-A3B", DownloadSource.MODELSCOPE: "Qwen/Qwen3-30B-A3B",
}, },
"Qwen3-30B-A3B-Instruct-2507": {
DownloadSource.DEFAULT: "Qwen/Qwen3-30B-A3B-Instruct-2507",
DownloadSource.MODELSCOPE: "Qwen/Qwen3-30B-A3B-Instruct-2507",
},
"Qwen3-30B-A3B-Thinking-2507": { "Qwen3-30B-A3B-Thinking-2507": {
DownloadSource.DEFAULT: "Qwen/Qwen3-30B-A3B-Thinking-2507", DownloadSource.DEFAULT: "Qwen/Qwen3-30B-A3B-Thinking-2507",
DownloadSource.MODELSCOPE: "Qwen/Qwen3-30B-A3B-Thinking-2507", DownloadSource.MODELSCOPE: "Qwen/Qwen3-30B-A3B-Thinking-2507",
@ -2803,10 +2795,6 @@ register_model_group(
DownloadSource.DEFAULT: "Qwen/Qwen3-235B-A22B", DownloadSource.DEFAULT: "Qwen/Qwen3-235B-A22B",
DownloadSource.MODELSCOPE: "Qwen/Qwen3-235B-A22B", DownloadSource.MODELSCOPE: "Qwen/Qwen3-235B-A22B",
}, },
"Qwen3-235B-A22B-Instruct-2507": {
DownloadSource.DEFAULT: "Qwen/Qwen3-235B-A22B-Instruct-2507",
DownloadSource.MODELSCOPE: "Qwen/Qwen3-235B-A22B-Instruct-2507",
},
"Qwen3-235B-A22B-Thinking-2507": { "Qwen3-235B-A22B-Thinking-2507": {
DownloadSource.DEFAULT: "Qwen/Qwen3-235B-A22B-Thinking-2507", DownloadSource.DEFAULT: "Qwen/Qwen3-235B-A22B-Thinking-2507",
DownloadSource.MODELSCOPE: "Qwen/Qwen3-235B-A22B-Thinking-2507", DownloadSource.MODELSCOPE: "Qwen/Qwen3-235B-A22B-Thinking-2507",
@ -2848,6 +2836,25 @@ register_model_group(
) )
register_model_group(
models={
"Qwen3-4B-Instruct-2507": {
DownloadSource.DEFAULT: "Qwen/Qwen3-4B-Instruct-2507",
DownloadSource.MODELSCOPE: "Qwen/Qwen3-4B-Instruct-2507",
},
"Qwen3-30B-A3B-Instruct-2507": {
DownloadSource.DEFAULT: "Qwen/Qwen3-30B-A3B-Instruct-2507",
DownloadSource.MODELSCOPE: "Qwen/Qwen3-30B-A3B-Instruct-2507",
},
"Qwen3-235B-A22B-Instruct-2507": {
DownloadSource.DEFAULT: "Qwen/Qwen3-235B-A22B-Instruct-2507",
DownloadSource.MODELSCOPE: "Qwen/Qwen3-235B-A22B-Instruct-2507",
},
},
template="qwen3_nothink",
)
register_model_group( register_model_group(
models={ models={
"Qwen2-Audio-7B": { "Qwen2-Audio-7B": {

View File

@ -16,7 +16,7 @@
# limitations under the License. # limitations under the License.
from dataclasses import asdict, dataclass, field from dataclasses import asdict, dataclass, field
from typing import Any, Literal, Optional, Union from typing import Any, Literal, Optional
@dataclass @dataclass

View File

@ -50,7 +50,7 @@ class RayArguments:
default="PACK", default="PACK",
metadata={"help": "The placement strategy for Ray training. Default is PACK."}, metadata={"help": "The placement strategy for Ray training. Default is PACK."},
) )
ray_init_kwargs: Optional[dict] = field( ray_init_kwargs: Optional[Union[dict, str]] = field(
default=None, default=None,
metadata={"help": "The arguments to pass to ray.init for Ray training. Default is None."}, metadata={"help": "The arguments to pass to ray.init for Ray training. Default is None."},
) )
@ -59,10 +59,14 @@ class RayArguments:
self.use_ray = use_ray() self.use_ray = use_ray()
if isinstance(self.resources_per_worker, str) and self.resources_per_worker.startswith("{"): if isinstance(self.resources_per_worker, str) and self.resources_per_worker.startswith("{"):
self.resources_per_worker = _convert_str_dict(json.loads(self.resources_per_worker)) self.resources_per_worker = _convert_str_dict(json.loads(self.resources_per_worker))
if isinstance(self.ray_init_kwargs, str) and self.ray_init_kwargs.startswith("{"):
self.ray_init_kwargs = _convert_str_dict(json.loads(self.ray_init_kwargs))
if self.ray_storage_filesystem is not None: if self.ray_storage_filesystem is not None:
if self.ray_storage_filesystem not in ["s3", "gs", "gcs"]: if self.ray_storage_filesystem not in ["s3", "gs", "gcs"]:
raise ValueError( raise ValueError(
f"ray_storage_filesystem must be one of ['s3', 'gs', 'gcs'], got {self.ray_storage_filesystem}" f"ray_storage_filesystem must be one of ['s3', 'gs', 'gcs'], got {self.ray_storage_filesystem}."
) )
import pyarrow.fs as fs import pyarrow.fs as fs