mirror of
https://github.com/hiyouga/LLaMA-Factory.git
synced 2025-12-15 11:20:35 +08:00
remove visual_inputs, fix qlora
This commit is contained in:
@@ -24,6 +24,7 @@ from ..extras.logging import get_logger
|
||||
from .model_utils.misc import find_all_linear_modules, find_expanded_modules
|
||||
from .model_utils.quantization import QuantizationMethod
|
||||
from .model_utils.unsloth import get_unsloth_peft_model, load_unsloth_peft_model
|
||||
from .model_utils.visual import get_forbidden_modules, patch_target_modules
|
||||
|
||||
|
||||
if TYPE_CHECKING:
|
||||
@@ -37,7 +38,6 @@ logger = get_logger(__name__)
|
||||
|
||||
def _setup_full_tuning(
|
||||
model: "PreTrainedModel",
|
||||
model_args: "ModelArguments",
|
||||
finetuning_args: "FinetuningArguments",
|
||||
is_trainable: bool,
|
||||
cast_trainable_params_to_fp32: bool,
|
||||
@@ -46,13 +46,7 @@ def _setup_full_tuning(
|
||||
return
|
||||
|
||||
logger.info("Fine-tuning method: Full")
|
||||
forbidden_modules = set()
|
||||
if model_args.visual_inputs and finetuning_args.freeze_vision_tower:
|
||||
forbidden_modules.add("vision_tower")
|
||||
|
||||
if model_args.visual_inputs and finetuning_args.train_mm_proj_only:
|
||||
forbidden_modules.add("language_model")
|
||||
|
||||
forbidden_modules = get_forbidden_modules(model.config, finetuning_args)
|
||||
for name, param in model.named_parameters():
|
||||
if not any(forbidden_module in name for forbidden_module in forbidden_modules):
|
||||
if cast_trainable_params_to_fp32:
|
||||
@@ -63,7 +57,6 @@ def _setup_full_tuning(
|
||||
|
||||
def _setup_freeze_tuning(
|
||||
model: "PreTrainedModel",
|
||||
model_args: "ModelArguments",
|
||||
finetuning_args: "FinetuningArguments",
|
||||
is_trainable: bool,
|
||||
cast_trainable_params_to_fp32: bool,
|
||||
@@ -72,8 +65,8 @@ def _setup_freeze_tuning(
|
||||
return
|
||||
|
||||
logger.info("Fine-tuning method: Freeze")
|
||||
if model_args.visual_inputs:
|
||||
config = model.config.text_config
|
||||
if hasattr(model.config, "text_config"): # composite models
|
||||
config = getattr(model.config, "text_config")
|
||||
else:
|
||||
config = model.config
|
||||
|
||||
@@ -130,10 +123,7 @@ def _setup_freeze_tuning(
|
||||
|
||||
trainable_layers.append(module_name)
|
||||
|
||||
forbidden_modules = set()
|
||||
if model_args.visual_inputs and finetuning_args.freeze_vision_tower:
|
||||
forbidden_modules.add("vision_tower")
|
||||
|
||||
forbidden_modules = get_forbidden_modules(model.config, finetuning_args)
|
||||
for name, param in model.named_parameters():
|
||||
if any(trainable_layer in name for trainable_layer in trainable_layers) and not any(
|
||||
forbidden_module in name for forbidden_module in forbidden_modules
|
||||
@@ -211,8 +201,7 @@ def _setup_lora_tuning(
|
||||
if finetuning_args.use_llama_pro:
|
||||
target_modules = find_expanded_modules(model, target_modules, finetuning_args.freeze_trainable_layers)
|
||||
|
||||
if model_args.visual_inputs and finetuning_args.freeze_vision_tower:
|
||||
target_modules = "^(?!.*(?:vision_tower|visual)).*(?:{}).*".format("|".join(target_modules))
|
||||
target_modules = patch_target_modules(model.config, finetuning_args, target_modules)
|
||||
|
||||
if (
|
||||
finetuning_args.use_dora
|
||||
@@ -303,9 +292,9 @@ def init_adapter(
|
||||
cast_trainable_params_to_fp32 = True
|
||||
|
||||
if finetuning_args.finetuning_type == "full":
|
||||
_setup_full_tuning(model, model_args, finetuning_args, is_trainable, cast_trainable_params_to_fp32)
|
||||
_setup_full_tuning(model, finetuning_args, is_trainable, cast_trainable_params_to_fp32)
|
||||
elif finetuning_args.finetuning_type == "freeze":
|
||||
_setup_freeze_tuning(model, model_args, finetuning_args, is_trainable, cast_trainable_params_to_fp32)
|
||||
_setup_freeze_tuning(model, finetuning_args, is_trainable, cast_trainable_params_to_fp32)
|
||||
elif finetuning_args.finetuning_type == "lora":
|
||||
model = _setup_lora_tuning(
|
||||
config, model, model_args, finetuning_args, is_trainable, cast_trainable_params_to_fp32
|
||||
|
||||
Reference in New Issue
Block a user