mirror of
https://github.com/hiyouga/LLaMA-Factory.git
synced 2026-01-09 23:50:36 +08:00
[release] Bye 2025 (#9702)
This commit is contained in:
@@ -18,9 +18,10 @@ import time
|
||||
|
||||
import av
|
||||
import fire
|
||||
from datasets import load_dataset
|
||||
from eval_bleu_rouge import compute_metrics
|
||||
from tqdm import tqdm
|
||||
from transformers import Seq2SeqTrainingArguments
|
||||
from datasets import load_dataset
|
||||
|
||||
from llamafactory.data import get_dataset, get_template_and_fix_tokenizer
|
||||
from llamafactory.extras.constants import IGNORE_INDEX
|
||||
@@ -29,8 +30,6 @@ from llamafactory.extras.packages import is_vllm_available
|
||||
from llamafactory.hparams import get_infer_args
|
||||
from llamafactory.model import load_tokenizer
|
||||
|
||||
from eval_bleu_rouge import compute_metrics
|
||||
|
||||
|
||||
if is_vllm_available():
|
||||
from vllm import LLM, SamplingParams
|
||||
@@ -235,10 +234,10 @@ def vllm_infer(
|
||||
print(f"{len(all_prompts)} total generated results have been saved at {save_name}.")
|
||||
print("*" * 70)
|
||||
|
||||
# Write all matrix results when matrix_save_name is not None,
|
||||
# Write all matrix results when matrix_save_name is not None,
|
||||
# The result matrix is referencing src.llamafactory.train.sft.workflow.run_sft # 127~132
|
||||
# trainer.save_metrics("predict", predict_results.metrics)
|
||||
#
|
||||
#
|
||||
# {
|
||||
# "predict_bleu-4": 4.349975,
|
||||
# "predict_model_preparation_time": 0.0128,
|
||||
@@ -265,11 +264,11 @@ def vllm_infer(
|
||||
print(f"predict_{task}: {score:.4f}")
|
||||
average_score["predict_" + task] = score
|
||||
|
||||
average_score['predict_model_preparation_time'] = preparation_time
|
||||
average_score['predict_runtime'] = predict_time
|
||||
average_score["predict_model_preparation_time"] = preparation_time
|
||||
average_score["predict_runtime"] = predict_time
|
||||
num_steps = len(range(0, len(train_dataset), batch_size))
|
||||
average_score['predict_samples_per_second'] = len(dataset) / predict_time if predict_time > 0 else 0.0
|
||||
average_score['predict_steps_per_second'] = num_steps / predict_time if predict_time > 0 else 0.0
|
||||
average_score["predict_samples_per_second"] = len(dataset) / predict_time if predict_time > 0 else 0.0
|
||||
average_score["predict_steps_per_second"] = num_steps / predict_time if predict_time > 0 else 0.0
|
||||
|
||||
with open(matrix_save_name, "w", encoding="utf-8") as f:
|
||||
json.dump(average_score, f, indent=4)
|
||||
@@ -280,4 +279,4 @@ def vllm_infer(
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
fire.Fire(vllm_infer)
|
||||
fire.Fire(vllm_infer)
|
||||
|
||||
Reference in New Issue
Block a user