[release] Bye 2025 (#9702)

This commit is contained in:
Yaowei Zheng
2025-12-31 22:22:40 +08:00
committed by GitHub
parent 000526908a
commit 95ac3f2373
59 changed files with 154 additions and 401 deletions

View File

@@ -18,19 +18,19 @@ By default, LLaMA-Factory uses all visible computing devices.
Basic usage:
```bash
llamafactory-cli train examples/train_lora/llama3_lora_sft.yaml
llamafactory-cli train examples/train_lora/qwen3_lora_sft.yaml
```
Advanced usage:
```bash
CUDA_VISIBLE_DEVICES=0,1 llamafactory-cli train examples/train_lora/llama3_lora_sft.yaml \
CUDA_VISIBLE_DEVICES=0,1 llamafactory-cli train examples/train_lora/qwen3_lora_sft.yaml \
learning_rate=1e-5 \
logging_steps=1
```
```bash
bash examples/train_lora/llama3_lora_sft.sh
bash examples/train_lora/qwen3_lora_sft.sh
```
## Examples
@@ -40,49 +40,43 @@ bash examples/train_lora/llama3_lora_sft.sh
#### (Continuous) Pre-Training
```bash
llamafactory-cli train examples/train_lora/llama3_lora_pretrain.yaml
llamafactory-cli train examples/train_lora/qwen3_lora_pretrain.yaml
```
#### Supervised Fine-Tuning
```bash
llamafactory-cli train examples/train_lora/llama3_lora_sft.yaml
llamafactory-cli train examples/train_lora/qwen3_lora_sft.yaml
```
#### Multimodal Supervised Fine-Tuning
```bash
llamafactory-cli train examples/train_lora/qwen2_5vl_lora_sft.yaml
llamafactory-cli train examples/train_lora/qwen3vl_lora_sft.yaml
```
#### DPO/ORPO/SimPO Training
```bash
llamafactory-cli train examples/train_lora/llama3_lora_dpo.yaml
llamafactory-cli train examples/train_lora/qwen3_lora_dpo.yaml
```
#### Multimodal DPO/ORPO/SimPO Training
```bash
llamafactory-cli train examples/train_lora/qwen2_5vl_lora_dpo.yaml
llamafactory-cli train examples/train_lora/qwen3vl_lora_dpo.yaml
```
#### Reward Modeling
```bash
llamafactory-cli train examples/train_lora/llama3_lora_reward.yaml
```
#### PPO Training
```bash
llamafactory-cli train examples/train_lora/llama3_lora_ppo.yaml
llamafactory-cli train examples/train_lora/qwen3_lora_reward.yaml
```
#### KTO Training
```bash
llamafactory-cli train examples/train_lora/llama3_lora_kto.yaml
llamafactory-cli train examples/train_lora/qwen3_lora_kto.yaml
```
#### Preprocess Dataset
@@ -90,32 +84,26 @@ llamafactory-cli train examples/train_lora/llama3_lora_kto.yaml
It is useful for large dataset, use `tokenized_path` in config to load the preprocessed dataset.
```bash
llamafactory-cli train examples/train_lora/llama3_preprocess.yaml
```
#### Evaluating on MMLU/CMMLU/C-Eval Benchmarks
```bash
llamafactory-cli eval examples/train_lora/llama3_lora_eval.yaml
llamafactory-cli train examples/train_lora/qwen3_preprocess.yaml
```
#### Supervised Fine-Tuning on Multiple Nodes
```bash
FORCE_TORCHRUN=1 NNODES=2 NODE_RANK=0 MASTER_ADDR=192.168.0.1 MASTER_PORT=29500 llamafactory-cli train examples/train_lora/llama3_lora_sft.yaml
FORCE_TORCHRUN=1 NNODES=2 NODE_RANK=1 MASTER_ADDR=192.168.0.1 MASTER_PORT=29500 llamafactory-cli train examples/train_lora/llama3_lora_sft.yaml
FORCE_TORCHRUN=1 NNODES=2 NODE_RANK=0 MASTER_ADDR=192.168.0.1 MASTER_PORT=29500 llamafactory-cli train examples/train_lora/qwen3_lora_sft.yaml
FORCE_TORCHRUN=1 NNODES=2 NODE_RANK=1 MASTER_ADDR=192.168.0.1 MASTER_PORT=29500 llamafactory-cli train examples/train_lora/qwen3_lora_sft.yaml
```
#### Supervised Fine-Tuning with DeepSpeed ZeRO-3 (Weight Sharding)
```bash
FORCE_TORCHRUN=1 llamafactory-cli train examples/train_lora/llama3_lora_sft_ds3.yaml
FORCE_TORCHRUN=1 llamafactory-cli train examples/train_lora/qwen3_lora_sft_ds3.yaml
```
#### Supervised Fine-Tuning with Ray on 4 GPUs
```bash
USE_RAY=1 llamafactory-cli train examples/train_lora/llama3_lora_sft_ray.yaml
USE_RAY=1 llamafactory-cli train examples/train_lora/qwen3_lora_sft_ray.yaml
```
### QLoRA Fine-Tuning
@@ -123,13 +111,13 @@ USE_RAY=1 llamafactory-cli train examples/train_lora/llama3_lora_sft_ray.yaml
#### Supervised Fine-Tuning with 4/8-bit Bitsandbytes/HQQ/EETQ Quantization (Recommended)
```bash
llamafactory-cli train examples/train_qlora/llama3_lora_sft_otfq.yaml
llamafactory-cli train examples/train_qlora/qwen3_lora_sft_otfq.yaml
```
#### Supervised Fine-Tuning with 4-bit Bitsandbytes Quantization on Ascend NPU
```bash
llamafactory-cli train examples/train_qlora/llama3_lora_sft_bnb_npu.yaml
llamafactory-cli train examples/train_qlora/qwen3_lora_sft_bnb_npu.yaml
```
#### Supervised Fine-Tuning with 4/8-bit GPTQ Quantization
@@ -155,14 +143,14 @@ llamafactory-cli train examples/train_qlora/llama3_lora_sft_aqlm.yaml
#### Supervised Fine-Tuning on Single Node
```bash
FORCE_TORCHRUN=1 llamafactory-cli train examples/train_full/llama3_full_sft.yaml
FORCE_TORCHRUN=1 llamafactory-cli train examples/train_full/qwen3_full_sft.yaml
```
#### Supervised Fine-Tuning on Multiple Nodes
```bash
FORCE_TORCHRUN=1 NNODES=2 NODE_RANK=0 MASTER_ADDR=192.168.0.1 MASTER_PORT=29500 llamafactory-cli train examples/train_full/llama3_full_sft.yaml
FORCE_TORCHRUN=1 NNODES=2 NODE_RANK=1 MASTER_ADDR=192.168.0.1 MASTER_PORT=29500 llamafactory-cli train examples/train_full/llama3_full_sft.yaml
FORCE_TORCHRUN=1 NNODES=2 NODE_RANK=0 MASTER_ADDR=192.168.0.1 MASTER_PORT=29500 llamafactory-cli train examples/train_full/qwen3_full_sft.yaml
FORCE_TORCHRUN=1 NNODES=2 NODE_RANK=1 MASTER_ADDR=192.168.0.1 MASTER_PORT=29500 llamafactory-cli train examples/train_full/qwen3_full_sft.yaml
```
### Elastic and Fault-Tolerant Supervised Fine-Tuning on Multiple Nodes
@@ -170,13 +158,13 @@ FORCE_TORCHRUN=1 NNODES=2 NODE_RANK=1 MASTER_ADDR=192.168.0.1 MASTER_PORT=29500
To launch an elastic job with `MAX_RESTARTS` failures retries, run the following on at least `MIN_NNODES` nodes and at most `MAX_NNODES` nodes. `RDZV_ID` should be set as a unique job id (shared by all nodes participating in the job). See also [torchrun](https://docs.pytorch.org/docs/stable/elastic/run.html).
```bash
FORCE_TORCHRUN=1 MIN_NNODES=1 MAX_NNODES=3 MAX_RESTARTS=3 RDZV_ID=llamafactory MASTER_ADDR=192.168.0.1 MASTER_PORT=29500 llamafactory-cli train examples/train_full/llama3_full_sft.yaml
FORCE_TORCHRUN=1 MIN_NNODES=1 MAX_NNODES=3 MAX_RESTARTS=3 RDZV_ID=llamafactory MASTER_ADDR=192.168.0.1 MASTER_PORT=29500 llamafactory-cli train examples/train_full/qwen3_full_sft.yaml
```
#### Multimodal Supervised Fine-Tuning
```bash
FORCE_TORCHRUN=1 llamafactory-cli train examples/train_full/qwen2_5vl_full_sft.yaml
FORCE_TORCHRUN=1 llamafactory-cli train examples/train_full/qwen3vl_full_sft.yaml
```
### Merging LoRA Adapters and Quantization
@@ -186,19 +174,19 @@ FORCE_TORCHRUN=1 llamafactory-cli train examples/train_full/qwen2_5vl_full_sft.y
Note: DO NOT use quantized model or `quantization_bit` when merging LoRA adapters.
```bash
llamafactory-cli export examples/merge_lora/llama3_lora_sft.yaml
llamafactory-cli export examples/merge_lora/qwen3_lora_sft.yaml
```
#### Quantizing Model using AutoGPTQ
```bash
llamafactory-cli export examples/merge_lora/llama3_gptq.yaml
llamafactory-cli export examples/merge_lora/qwen3_gptq.yaml
```
### Save Ollama modelfile
```bash
llamafactory-cli export examples/merge_lora/llama3_full_sft.yaml
llamafactory-cli export examples/merge_lora/qwen3_full_sft.yaml
```
### Inferring LoRA Fine-Tuned Models
@@ -206,26 +194,26 @@ llamafactory-cli export examples/merge_lora/llama3_full_sft.yaml
#### Evaluation using vLLM's Multi-GPU Inference
```
python scripts/vllm_infer.py --model_name_or_path meta-llama/Meta-Llama-3-8B-Instruct --template llama3 --dataset alpaca_en_demo
python scripts/vllm_infer.py --model_name_or_path Qwen/Qwen3-4B-Instruct-2507 --template qwen3_nothink --dataset alpaca_en_demo
python scripts/eval_bleu_rouge.py generated_predictions.jsonl
```
#### Use CLI ChatBox
```bash
llamafactory-cli chat examples/inference/llama3_lora_sft.yaml
llamafactory-cli chat examples/inference/qwen3_lora_sft.yaml
```
#### Use Web UI ChatBox
```bash
llamafactory-cli webchat examples/inference/llama3_lora_sft.yaml
llamafactory-cli webchat examples/inference/qwen3_lora_sft.yaml
```
#### Launch OpenAI-style API
```bash
llamafactory-cli api examples/inference/llama3_lora_sft.yaml
llamafactory-cli api examples/inference/qwen3_lora_sft.yaml
```
### Extras