mirror of
https://github.com/hiyouga/LLaMA-Factory.git
synced 2025-11-05 02:12:14 +08:00
[train] KTransformers SFT as backend engine for LLaMA-Factory (#9400)
Co-authored-by: jimmy128 <jimmy128@noreply.gitcode.com> Co-authored-by: Yaowei Zheng <hiyouga@buaa.edu.cn>
This commit is contained in:
parent
3ae15da9c0
commit
934b3084ee
@ -15,6 +15,7 @@ LLAMAFACTORY_VERBOSITY=
|
||||
USE_MODELSCOPE_HUB=
|
||||
USE_OPENMIND_HUB=
|
||||
USE_RAY=
|
||||
USE_KT=
|
||||
RECORD_VRAM=
|
||||
OPTIM_TORCH=
|
||||
NPU_JIT_COMPILE=
|
||||
|
||||
10
examples/inference/deepseek2_lora_sft_kt.yaml
Normal file
10
examples/inference/deepseek2_lora_sft_kt.yaml
Normal file
@ -0,0 +1,10 @@
|
||||
model_name_or_path: deepseek-ai/DeepSeek-V2-Lite
|
||||
adapter_name_or_path: saves/Kllama_deepseekV2
|
||||
template: deepseek
|
||||
infer_backend: ktransformers # choices: [huggingface, vllm, sglang, ktransformers]
|
||||
trust_remote_code: true
|
||||
|
||||
use_kt: true # use KTransformers as LoRA sft backend to inference
|
||||
kt_optimize_rule: examples/kt_optimize_rules/DeepSeek-V2-Lite-Chat-sft-amx.yaml
|
||||
cpu_infer: 32
|
||||
chunk_size: 8192
|
||||
9
examples/inference/deepseek3_kt.yaml
Normal file
9
examples/inference/deepseek3_kt.yaml
Normal file
@ -0,0 +1,9 @@
|
||||
model_name_or_path: opensourcerelease/DeepSeek-V3-bf16
|
||||
template: deepseek
|
||||
infer_backend: ktransformers # choices: [huggingface, vllm, sglang, ktransformers]
|
||||
trust_remote_code: true
|
||||
|
||||
use_kt: true # use KTransformers as LoRA sft backend to inference
|
||||
kt_optimize_rule: examples/kt_optimize_rules/DeepSeek-V3-Chat-sft-amx-multi-gpu.yaml
|
||||
cpu_infer: 32
|
||||
chunk_size: 8192
|
||||
10
examples/inference/deepseek3_lora_sft_kt.yaml
Normal file
10
examples/inference/deepseek3_lora_sft_kt.yaml
Normal file
@ -0,0 +1,10 @@
|
||||
model_name_or_path: opensourcerelease/DeepSeek-V3-bf16
|
||||
adapter_name_or_path: saves/Kllama_deepseekV3
|
||||
template: deepseek
|
||||
infer_backend: ktransformers # choices: [huggingface, vllm, sglang, ktransformers]
|
||||
trust_remote_code: true
|
||||
|
||||
use_kt: true # use KTransformers as LoRA sft backend to inference
|
||||
kt_optimize_rule: examples/kt_optimize_rules/DeepSeek-V3-Chat-sft-amx-multi-gpu.yaml
|
||||
cpu_infer: 32
|
||||
chunk_size: 8192
|
||||
@ -1,4 +1,4 @@
|
||||
model_name_or_path: meta-llama/Meta-Llama-3-8B-Instruct
|
||||
template: llama3
|
||||
infer_backend: huggingface # choices: [huggingface, vllm, sglang]
|
||||
infer_backend: huggingface # choices: [huggingface, vllm, sglang, ktransformers]
|
||||
trust_remote_code: true
|
||||
|
||||
@ -1,4 +1,4 @@
|
||||
model_name_or_path: saves/llama3-8b/full/sft
|
||||
template: llama3
|
||||
infer_backend: huggingface # choices: [huggingface, vllm, sglang]
|
||||
infer_backend: huggingface # choices: [huggingface, vllm, sglang, ktransformers]
|
||||
trust_remote_code: true
|
||||
|
||||
@ -1,5 +1,5 @@
|
||||
model_name_or_path: meta-llama/Meta-Llama-3-8B-Instruct
|
||||
adapter_name_or_path: saves/llama3-8b/lora/sft
|
||||
template: llama3
|
||||
infer_backend: huggingface # choices: [huggingface, vllm, sglang]
|
||||
infer_backend: huggingface # choices: [huggingface, vllm, sglang, ktransformers]
|
||||
trust_remote_code: true
|
||||
|
||||
@ -1,4 +1,4 @@
|
||||
model_name_or_path: Qwen/Qwen2.5-VL-7B-Instruct
|
||||
template: qwen2_vl
|
||||
infer_backend: huggingface # choices: [huggingface, vllm, sglang]
|
||||
infer_backend: huggingface # choices: [huggingface, vllm, sglang, ktransformers]
|
||||
trust_remote_code: true
|
||||
|
||||
69
examples/kt_optimize_rules/DeepSeek-V2-Chat-sft-amx.yaml
Normal file
69
examples/kt_optimize_rules/DeepSeek-V2-Chat-sft-amx.yaml
Normal file
@ -0,0 +1,69 @@
|
||||
- match:
|
||||
class: ktransformers.models.modeling_deepseek.DeepseekV2YarnRotaryEmbedding
|
||||
replace:
|
||||
class: ktransformers.operators.RoPE.YarnRotaryEmbedding
|
||||
kwargs:
|
||||
generate_device: "cuda"
|
||||
prefill_device: "cuda"
|
||||
- match:
|
||||
name: "^model\\.layers\\.(?!.*self_attn\\.kv_b_proj).*$" # regular expression
|
||||
class: torch.nn.Linear # only match modules matching name and class simultaneously
|
||||
replace:
|
||||
class: ktransformers.operators.linear.KTransformersLinear # optimized Kernel on quantized data types
|
||||
kwargs:
|
||||
generate_device: "cuda"
|
||||
prefill_device: "cuda"
|
||||
generate_op: "KLinearTorch"
|
||||
prefill_op: "KLinearTorch"
|
||||
|
||||
- match:
|
||||
name: "^lm_head"
|
||||
class: torch.nn.Linear
|
||||
replace:
|
||||
class: ktransformers.operators.linear.KTransformersLinear
|
||||
kwargs:
|
||||
generate_device: "cuda"
|
||||
prefill_device: "cuda"
|
||||
generate_op: "KLinearTorch"
|
||||
prefill_op: "KLinearTorch"
|
||||
|
||||
- match:
|
||||
name: "^model\\.layers\\..*\\.mlp$"
|
||||
class: ktransformers.models.modeling_deepseek.DeepseekV2MoE
|
||||
replace:
|
||||
class: ktransformers.operators.experts.KDeepseekV2MoE # mlp module with custom forward function
|
||||
kwargs:
|
||||
generate_device: "cuda"
|
||||
prefill_device: "cuda"
|
||||
- match:
|
||||
name: "^model\\.layers\\..*\\.mlp\\.experts$"
|
||||
replace:
|
||||
class: ktransformers.operators.experts.KTransformersExperts # custom MoE Kernel with expert paralleism
|
||||
kwargs:
|
||||
prefill_device: "cuda"
|
||||
prefill_op: "KExpertsTorch"
|
||||
generate_device: "cpu"
|
||||
generate_op: "KSFTExpertsCPU"
|
||||
out_device: "cuda"
|
||||
backend: "AMXInt8" # or "AMXBF16" or "llamafile" (default)
|
||||
recursive: False # don't recursively inject submodules of this module
|
||||
- match:
|
||||
name: "^model\\.layers\\..*\\.self_attn$"
|
||||
replace:
|
||||
class: ktransformers.operators.attention.KDeepseekV2Attention # optimized MLA implementation
|
||||
kwargs:
|
||||
generate_device: "cuda"
|
||||
prefill_device: "cuda"
|
||||
- match:
|
||||
name: "^model$"
|
||||
replace:
|
||||
class: "ktransformers.operators.models.KDeepseekV2Model"
|
||||
kwargs:
|
||||
per_layer_prefill_intput_threshold: 0 # 0 is close layer wise prefill
|
||||
- match:
|
||||
name: "^model.embed_tokens"
|
||||
replace:
|
||||
class: "default"
|
||||
kwargs:
|
||||
generate_device: "cpu"
|
||||
prefill_device: "cpu"
|
||||
68
examples/kt_optimize_rules/DeepSeek-V2-Chat.yaml
Normal file
68
examples/kt_optimize_rules/DeepSeek-V2-Chat.yaml
Normal file
@ -0,0 +1,68 @@
|
||||
- match:
|
||||
class: ktransformers.models.modeling_deepseek.DeepseekV2YarnRotaryEmbedding
|
||||
replace:
|
||||
class: ktransformers.operators.RoPE.YarnRotaryEmbedding
|
||||
kwargs:
|
||||
generate_device: "cuda"
|
||||
prefill_device: "cuda"
|
||||
- match:
|
||||
name: "^model\\.layers\\.(?!.*self_attn\\.kv_b_proj).*$" # regular expression
|
||||
class: torch.nn.Linear # only match modules matching name and class simultaneously
|
||||
replace:
|
||||
class: ktransformers.operators.linear.KTransformersLinear # optimized Kernel on quantized data types
|
||||
kwargs:
|
||||
generate_device: "cuda"
|
||||
prefill_device: "cuda"
|
||||
generate_op: "KLinearMarlin"
|
||||
prefill_op: "KLinearTorch"
|
||||
|
||||
- match:
|
||||
name: "^lm_head"
|
||||
class: torch.nn.Linear
|
||||
replace:
|
||||
class: ktransformers.operators.linear.KTransformersLinear
|
||||
kwargs:
|
||||
generate_device: "cuda"
|
||||
prefill_device: "cuda"
|
||||
generate_op: "KLinearMarlin"
|
||||
prefill_op: "KLinearTorch"
|
||||
|
||||
- match:
|
||||
name: "^model\\.layers\\..*\\.mlp$"
|
||||
class: ktransformers.models.modeling_deepseek.DeepseekV2MoE
|
||||
replace:
|
||||
class: ktransformers.operators.experts.KDeepseekV2MoE # mlp module with custom forward function
|
||||
kwargs:
|
||||
generate_device: "cuda"
|
||||
prefill_device: "cuda"
|
||||
- match:
|
||||
name: "^model\\.layers\\..*\\.mlp\\.experts$"
|
||||
replace:
|
||||
class: ktransformers.operators.experts.KTransformersExperts # custom MoE Kernel with expert paralleism
|
||||
kwargs:
|
||||
prefill_device: "cuda"
|
||||
prefill_op: "KExpertsTorch"
|
||||
generate_device: "cpu"
|
||||
generate_op: "KExpertsCPU"
|
||||
out_device: "cuda"
|
||||
recursive: False # don't recursively inject submodules of this module
|
||||
- match:
|
||||
name: "^model\\.layers\\..*\\.self_attn$"
|
||||
replace:
|
||||
class: ktransformers.operators.attention.KDeepseekV2Attention # optimized MLA implementation
|
||||
kwargs:
|
||||
generate_device: "cuda"
|
||||
prefill_device: "cuda"
|
||||
- match:
|
||||
name: "^model$"
|
||||
replace:
|
||||
class: "ktransformers.operators.models.KDeepseekV2Model"
|
||||
kwargs:
|
||||
per_layer_prefill_intput_threshold: 0 # 0 is close layer wise prefill
|
||||
- match:
|
||||
name: "^model.embed_tokens"
|
||||
replace:
|
||||
class: "default"
|
||||
kwargs:
|
||||
generate_device: "cpu"
|
||||
prefill_device: "cpu"
|
||||
@ -0,0 +1,139 @@
|
||||
- match:
|
||||
name: "^model.embed_tokens"
|
||||
replace:
|
||||
class: "default"
|
||||
kwargs:
|
||||
generate_device: "cpu"
|
||||
prefill_device: "cpu"
|
||||
|
||||
- match:
|
||||
name: "^model\\.layers\\.(0|[1-9])\\."
|
||||
class: ktransformers.models.modeling_deepseek.DeepseekV2YarnRotaryEmbedding
|
||||
replace:
|
||||
class: ktransformers.operators.RoPE.YarnRotaryEmbedding
|
||||
kwargs:
|
||||
generate_device: "cuda:0"
|
||||
prefill_device: "cuda:0"
|
||||
- match:
|
||||
name: "^model\\.layers\\.([12][0-9])\\."
|
||||
class: ktransformers.models.modeling_deepseek.DeepseekV2YarnRotaryEmbedding
|
||||
replace:
|
||||
class: ktransformers.operators.RoPE.YarnRotaryEmbedding
|
||||
kwargs:
|
||||
generate_device: "cuda:1"
|
||||
prefill_device: "cuda:1"
|
||||
|
||||
- match:
|
||||
name: "^model\\.layers\\.(0|[1-9])\\.(?!.*self_attn\\.kv_b_proj).*$" # regular expression
|
||||
class: torch.nn.Linear # only match modules matching name and class simultaneously
|
||||
replace:
|
||||
class: ktransformers.operators.linear.KTransformersLinear # optimized Kernel on quantized data types
|
||||
kwargs:
|
||||
generate_device: "cuda:0"
|
||||
prefill_device: "cuda:0"
|
||||
generate_op: "KLinearTorch"
|
||||
prefill_op: "KLinearTorch"
|
||||
|
||||
- match:
|
||||
name: "^model\\.layers\\.([12][0-9])\\.(?!.*self_attn\\.kv_b_proj).*$" # regular expression
|
||||
class: torch.nn.Linear # only match modules matching name and class simultaneously
|
||||
replace:
|
||||
class: ktransformers.operators.linear.KTransformersLinear # optimized Kernel on quantized data types
|
||||
kwargs:
|
||||
generate_device: "cuda:1"
|
||||
prefill_device: "cuda:1"
|
||||
generate_op: "KLinearTorch"
|
||||
prefill_op: "KLinearTorch"
|
||||
|
||||
- match:
|
||||
name: "^model\\.layers\\.(0|[1-9])\\.mlp$"
|
||||
class: ktransformers.models.modeling_deepseek.DeepseekV2MoE
|
||||
replace:
|
||||
class: ktransformers.operators.experts.KDeepseekV2MoE # mlp module with custom forward function
|
||||
kwargs:
|
||||
generate_device: "cuda:0"
|
||||
prefill_device: "cuda:0"
|
||||
- match:
|
||||
name: "^model\\.layers\\.([12][0-9])\\.mlp$"
|
||||
class: ktransformers.models.modeling_deepseek.DeepseekV2MoE
|
||||
replace:
|
||||
class: ktransformers.operators.experts.KDeepseekV2MoE # mlp module with custom forward function
|
||||
kwargs:
|
||||
generate_device: "cuda:1"
|
||||
prefill_device: "cuda:1"
|
||||
|
||||
- match:
|
||||
name: "^model\\.layers\\.(0|[1-9])\\.mlp\\.experts$"
|
||||
replace:
|
||||
class: ktransformers.operators.experts.KTransformersExperts # custom MoE Kernel with expert paralleism
|
||||
kwargs:
|
||||
prefill_device: "cuda:0"
|
||||
prefill_op: "KExpertsTorch"
|
||||
generate_device: "cpu"
|
||||
generate_op: "KSFTExpertsCPU"
|
||||
out_device: "cuda:0"
|
||||
backend: "AMXInt8" # or "AMXBF16" or "llamafile" (default)
|
||||
recursive: False # don't recursively inject submodules of this module
|
||||
|
||||
- match:
|
||||
name: "^model\\.layers\\.([12][0-9])\\.mlp\\.experts$"
|
||||
replace:
|
||||
class: ktransformers.operators.experts.KTransformersExperts # custom MoE Kernel with expert paralleism
|
||||
kwargs:
|
||||
prefill_device: "cuda:1"
|
||||
prefill_op: "KExpertsTorch"
|
||||
generate_device: "cpu"
|
||||
generate_op: "KSFTExpertsCPU"
|
||||
out_device: "cuda:1"
|
||||
backend: "AMXInt8" # or "AMXBF16" or "llamafile" (default)
|
||||
recursive: False # don't recursively inject submodules of this module
|
||||
|
||||
- match:
|
||||
name: "^model\\.layers\\.(0|[1-9])\\.self_attn$"
|
||||
replace:
|
||||
class: ktransformers.operators.attention.KDeepseekV2Attention # optimized MLA implementation
|
||||
kwargs:
|
||||
generate_device: "cuda:0"
|
||||
prefill_device: "cuda:0"
|
||||
- match:
|
||||
name: "^model\\.layers\\.([12][0-9])\\.self_attn$"
|
||||
replace:
|
||||
class: ktransformers.operators.attention.KDeepseekV2Attention # optimized MLA implementation
|
||||
kwargs:
|
||||
generate_device: "cuda:1"
|
||||
prefill_device: "cuda:1"
|
||||
- match:
|
||||
name: "^model$"
|
||||
replace:
|
||||
class: "ktransformers.operators.models.KDeepseekV2Model"
|
||||
kwargs:
|
||||
per_layer_prefill_intput_threshold: 0 # 0 is close layer wise prefill
|
||||
transfer_map:
|
||||
10: "cuda:1"
|
||||
|
||||
- match:
|
||||
name: "^model\\.layers\\.(0|[1-9])\\."
|
||||
replace:
|
||||
class: "default"
|
||||
kwargs:
|
||||
generate_device: "cuda:0"
|
||||
prefill_device: "cuda:0"
|
||||
|
||||
- match:
|
||||
name: "^lm_head"
|
||||
class: torch.nn.Linear
|
||||
replace:
|
||||
class: ktransformers.operators.linear.KTransformersLinear
|
||||
kwargs:
|
||||
generate_device: "cuda:1"
|
||||
prefill_device: "cuda:1"
|
||||
generate_op: "KLinearTorch"
|
||||
prefill_op: "KLinearTorch"
|
||||
|
||||
- match:
|
||||
name: "(^model\\.layers\\.([12][0-9])\\.)|(model.norm)"
|
||||
replace:
|
||||
class: "default"
|
||||
kwargs:
|
||||
generate_device: "cuda:1"
|
||||
prefill_device: "cuda:1"
|
||||
@ -0,0 +1,69 @@
|
||||
- match:
|
||||
class: ktransformers.models.modeling_deepseek.DeepseekV2YarnRotaryEmbedding
|
||||
replace:
|
||||
class: ktransformers.operators.RoPE.YarnRotaryEmbedding
|
||||
kwargs:
|
||||
generate_device: "cuda"
|
||||
prefill_device: "cuda"
|
||||
- match:
|
||||
name: "^model\\.layers\\.(?!.*self_attn\\.kv_b_proj).*$" # regular expression
|
||||
class: torch.nn.Linear # only match modules matching name and class simultaneously
|
||||
replace:
|
||||
class: ktransformers.operators.linear.KTransformersLinear # optimized Kernel on quantized data types
|
||||
kwargs:
|
||||
generate_device: "cuda"
|
||||
prefill_device: "cuda"
|
||||
generate_op: "KLinearTorch"
|
||||
prefill_op: "KLinearTorch"
|
||||
|
||||
- match:
|
||||
name: "^lm_head"
|
||||
class: torch.nn.Linear
|
||||
replace:
|
||||
class: ktransformers.operators.linear.KTransformersLinear
|
||||
kwargs:
|
||||
generate_device: "cuda"
|
||||
prefill_device: "cuda"
|
||||
generate_op: "KLinearTorch"
|
||||
prefill_op: "KLinearTorch"
|
||||
|
||||
- match:
|
||||
name: "^model\\.layers\\..*\\.mlp$"
|
||||
class: ktransformers.models.modeling_deepseek.DeepseekV2MoE
|
||||
replace:
|
||||
class: ktransformers.operators.experts.KDeepseekV2MoE # mlp module with custom forward function
|
||||
kwargs:
|
||||
generate_device: "cuda"
|
||||
prefill_device: "cuda"
|
||||
- match:
|
||||
name: "^model\\.layers\\..*\\.mlp\\.experts$"
|
||||
replace:
|
||||
class: ktransformers.operators.experts.KTransformersExperts # custom MoE Kernel with expert paralleism
|
||||
kwargs:
|
||||
prefill_device: "cpu"
|
||||
prefill_op: "KExpertsTorch"
|
||||
generate_device: "cpu"
|
||||
generate_op: "KSFTExpertsCPU"
|
||||
out_device: "cuda"
|
||||
backend: "AMXInt8" # or "AMXBF16" or "llamafile" (default)
|
||||
recursive: False # don't recursively inject submodules of this module
|
||||
- match:
|
||||
name: "^model\\.layers\\..*\\.self_attn$"
|
||||
replace:
|
||||
class: ktransformers.operators.attention.KDeepseekV2Attention # optimized MLA implementation
|
||||
kwargs:
|
||||
generate_device: "cuda"
|
||||
prefill_device: "cuda"
|
||||
- match:
|
||||
name: "^model$"
|
||||
replace:
|
||||
class: "ktransformers.operators.models.KDeepseekV2Model"
|
||||
kwargs:
|
||||
per_layer_prefill_intput_threshold: 0 # 0 is close layer wise prefill
|
||||
- match:
|
||||
name: "^model.embed_tokens"
|
||||
replace:
|
||||
class: "default"
|
||||
kwargs:
|
||||
generate_device: "cpu"
|
||||
prefill_device: "cpu"
|
||||
68
examples/kt_optimize_rules/DeepSeek-V2-Lite-Chat-sft.yaml
Normal file
68
examples/kt_optimize_rules/DeepSeek-V2-Lite-Chat-sft.yaml
Normal file
@ -0,0 +1,68 @@
|
||||
- match:
|
||||
class: ktransformers.models.modeling_deepseek.DeepseekV2YarnRotaryEmbedding
|
||||
replace:
|
||||
class: ktransformers.operators.RoPE.YarnRotaryEmbedding
|
||||
kwargs:
|
||||
generate_device: "cuda"
|
||||
prefill_device: "cuda"
|
||||
- match:
|
||||
name: "^model\\.layers\\.(?!.*self_attn\\.kv_b_proj).*$" # regular expression
|
||||
class: torch.nn.Linear # only match modules matching name and class simultaneously
|
||||
replace:
|
||||
class: ktransformers.operators.linear.KTransformersLinear # optimized Kernel on quantized data types
|
||||
kwargs:
|
||||
generate_device: "cuda"
|
||||
prefill_device: "cuda"
|
||||
generate_op: "KLinearTorch"
|
||||
prefill_op: "KLinearTorch"
|
||||
|
||||
- match:
|
||||
name: "^lm_head"
|
||||
class: torch.nn.Linear
|
||||
replace:
|
||||
class: ktransformers.operators.linear.KTransformersLinear
|
||||
kwargs:
|
||||
generate_device: "cuda"
|
||||
prefill_device: "cuda"
|
||||
generate_op: "KLinearTorch"
|
||||
prefill_op: "KLinearTorch"
|
||||
|
||||
- match:
|
||||
name: "^model\\.layers\\..*\\.mlp$"
|
||||
class: ktransformers.models.modeling_deepseek.DeepseekV2MoE
|
||||
replace:
|
||||
class: ktransformers.operators.experts.KDeepseekV2MoE # mlp module with custom forward function
|
||||
kwargs:
|
||||
generate_device: "cuda"
|
||||
prefill_device: "cuda"
|
||||
- match:
|
||||
name: "^model\\.layers\\..*\\.mlp\\.experts$"
|
||||
replace:
|
||||
class: ktransformers.operators.experts.KTransformersExperts # custom MoE Kernel with expert paralleism
|
||||
kwargs:
|
||||
prefill_device: "cpu"
|
||||
prefill_op: "KExpertsTorch"
|
||||
generate_device: "cpu"
|
||||
generate_op: "KSFTExpertsCPU"
|
||||
out_device: "cuda"
|
||||
recursive: False # don't recursively inject submodules of this module
|
||||
- match:
|
||||
name: "^model\\.layers\\..*\\.self_attn$"
|
||||
replace:
|
||||
class: ktransformers.operators.attention.KDeepseekV2Attention # optimized MLA implementation
|
||||
kwargs:
|
||||
generate_device: "cuda"
|
||||
prefill_device: "cuda"
|
||||
- match:
|
||||
name: "^model$"
|
||||
replace:
|
||||
class: "ktransformers.operators.models.KDeepseekV2Model"
|
||||
kwargs:
|
||||
per_layer_prefill_intput_threshold: 0 # 0 is close layer wise prefill
|
||||
- match:
|
||||
name: "^model.embed_tokens"
|
||||
replace:
|
||||
class: "default"
|
||||
kwargs:
|
||||
generate_device: "cpu"
|
||||
prefill_device: "cpu"
|
||||
68
examples/kt_optimize_rules/DeepSeek-V2-Lite-Chat.yaml
Normal file
68
examples/kt_optimize_rules/DeepSeek-V2-Lite-Chat.yaml
Normal file
@ -0,0 +1,68 @@
|
||||
- match:
|
||||
class: ktransformers.models.modeling_deepseek.DeepseekV2YarnRotaryEmbedding
|
||||
replace:
|
||||
class: ktransformers.operators.RoPE.YarnRotaryEmbedding
|
||||
kwargs:
|
||||
generate_device: "cuda"
|
||||
prefill_device: "cuda"
|
||||
- match:
|
||||
name: "^model\\.layers\\.(?!.*self_attn\\.kv_b_proj).*$" # regular expression
|
||||
class: torch.nn.Linear # only match modules matching name and class simultaneously
|
||||
replace:
|
||||
class: ktransformers.operators.linear.KTransformersLinear # optimized Kernel on quantized data types
|
||||
kwargs:
|
||||
generate_device: "cuda"
|
||||
prefill_device: "cuda"
|
||||
generate_op: "KLinearMarlin"
|
||||
prefill_op: "KLinearTorch"
|
||||
|
||||
- match:
|
||||
name: "^lm_head"
|
||||
class: torch.nn.Linear
|
||||
replace:
|
||||
class: ktransformers.operators.linear.KTransformersLinear
|
||||
kwargs:
|
||||
generate_device: "cuda"
|
||||
prefill_device: "cuda"
|
||||
generate_op: "KLinearMarlin"
|
||||
prefill_op: "KLinearTorch"
|
||||
|
||||
- match:
|
||||
name: "^model\\.layers\\..*\\.mlp$"
|
||||
class: ktransformers.models.modeling_deepseek.DeepseekV2MoE
|
||||
replace:
|
||||
class: ktransformers.operators.experts.KDeepseekV2MoE # mlp module with custom forward function
|
||||
kwargs:
|
||||
generate_device: "cuda"
|
||||
prefill_device: "cuda"
|
||||
- match:
|
||||
name: "^model\\.layers\\..*\\.mlp\\.experts$"
|
||||
replace:
|
||||
class: ktransformers.operators.experts.KTransformersExperts # custom MoE Kernel with expert paralleism
|
||||
kwargs:
|
||||
prefill_device: "cuda"
|
||||
prefill_op: "KExpertsTorch"
|
||||
generate_device: "cpu"
|
||||
generate_op: "KExpertsCPU"
|
||||
out_device: "cuda"
|
||||
recursive: False # don't recursively inject submodules of this module
|
||||
- match:
|
||||
name: "^model\\.layers\\..*\\.self_attn$"
|
||||
replace:
|
||||
class: ktransformers.operators.attention.KDeepseekV2Attention # optimized MLA implementation
|
||||
kwargs:
|
||||
generate_device: "cuda"
|
||||
prefill_device: "cuda"
|
||||
- match:
|
||||
name: "^model$"
|
||||
replace:
|
||||
class: "ktransformers.operators.models.KDeepseekV2Model"
|
||||
kwargs:
|
||||
per_layer_prefill_intput_threshold: 0 # 0 is close layer wise prefill
|
||||
- match:
|
||||
name: "^model.embed_tokens"
|
||||
replace:
|
||||
class: "default"
|
||||
kwargs:
|
||||
generate_device: "cpu"
|
||||
prefill_device: "cpu"
|
||||
77
examples/kt_optimize_rules/DeepSeek-V3-Chat-amx.yaml
Normal file
77
examples/kt_optimize_rules/DeepSeek-V3-Chat-amx.yaml
Normal file
@ -0,0 +1,77 @@
|
||||
- match:
|
||||
class: ktransformers.models.modeling_deepseek_v3.DeepseekV3RotaryEmbedding
|
||||
replace:
|
||||
class: ktransformers.operators.RoPE.YarnRotaryEmbeddingV3
|
||||
kwargs:
|
||||
generate_device: "cuda"
|
||||
prefill_device: "cuda"
|
||||
|
||||
- match:
|
||||
name: "^lm_head$" # regular expression
|
||||
class: torch.nn.Linear # only match modules matching name and class simultaneously
|
||||
replace:
|
||||
class: ktransformers.operators.linear.KTransformersLinear # optimized Kernel on quantized data types
|
||||
kwargs:
|
||||
generate_device: "cuda"
|
||||
prefill_device: "cuda"
|
||||
generate_op: "KLinearMarlin"
|
||||
prefill_op: "KLinearTorch"
|
||||
|
||||
- match:
|
||||
name: "^model\\.layers\\.(?!.*self_attn\\.kv_b_proj).*$" # regular expression
|
||||
class: torch.nn.Linear # only match modules matching name and class simultaneously
|
||||
replace:
|
||||
class: ktransformers.operators.linear.KTransformersLinear # optimized Kernel on quantized data types
|
||||
kwargs:
|
||||
generate_device: "cuda"
|
||||
prefill_device: "cuda"
|
||||
generate_op: "KLinearMarlin"
|
||||
prefill_op: "KLinearTorch"
|
||||
- match:
|
||||
name: "^model\\.layers\\..*\\.mlp$"
|
||||
class: ktransformers.models.modeling_deepseek_v3.DeepseekV3MoE
|
||||
replace:
|
||||
class: ktransformers.operators.experts.KDeepseekV3MoE # mlp module with custom forward function
|
||||
kwargs:
|
||||
generate_device: "cuda"
|
||||
prefill_device: "cuda"
|
||||
- match:
|
||||
class: ktransformers.models.modeling_deepseek_v3.MoEGate
|
||||
replace:
|
||||
class: ktransformers.operators.gate.KMoEGate
|
||||
kwargs:
|
||||
generate_device: "cuda:0"
|
||||
prefill_device: "cuda:0"
|
||||
- match:
|
||||
name: "^model\\.layers\\..*\\.mlp\\.experts$"
|
||||
replace:
|
||||
class: ktransformers.operators.experts.KTransformersExperts # custom MoE Kernel with expert paralleism
|
||||
kwargs:
|
||||
prefill_device: "cuda"
|
||||
prefill_op: "KExpertsTorch"
|
||||
generate_device: "cpu"
|
||||
generate_op: "KExpertsCPU"
|
||||
out_device: "cuda"
|
||||
backend: "AMXInt8" # or "AMXBF16" or "llamafile" (default)
|
||||
recursive: False # don't recursively inject submodules of this module
|
||||
- match:
|
||||
name: "^model\\.layers\\..*\\.self_attn$"
|
||||
replace:
|
||||
class: ktransformers.operators.attention.KDeepseekV2Attention # optimized MLA implementation
|
||||
kwargs:
|
||||
generate_device: "cuda"
|
||||
prefill_device: "cuda"
|
||||
absorb_for_prefill: False # change this to True to enable long context(prefill may slower).
|
||||
- match:
|
||||
name: "^model$"
|
||||
replace:
|
||||
class: "ktransformers.operators.models.KDeepseekV2Model"
|
||||
kwargs:
|
||||
per_layer_prefill_intput_threshold: 0 # 0 is close layer wise prefill
|
||||
- match:
|
||||
name: "^model.embed_tokens"
|
||||
replace:
|
||||
class: "default"
|
||||
kwargs:
|
||||
generate_device: "cpu"
|
||||
prefill_device: "cpu"
|
||||
@ -0,0 +1,392 @@
|
||||
- match:
|
||||
name: "^model.embed_tokens"
|
||||
replace:
|
||||
class: "default"
|
||||
kwargs:
|
||||
generate_device: "cpu"
|
||||
prefill_device: "cpu"
|
||||
|
||||
# === Rotary Embedding Replacement ===
|
||||
|
||||
# GPU 0: layers 0–14
|
||||
- match:
|
||||
name: "^model\\.layers\\.([0-9]|1[0-4])\\."
|
||||
class: ktransformers.models.modeling_deepseek_v3.DeepseekV3RotaryEmbedding
|
||||
replace:
|
||||
class: ktransformers.operators.RoPE.YarnRotaryEmbeddingV3
|
||||
kwargs:
|
||||
generate_device: "cuda:0"
|
||||
prefill_device: "cuda:0"
|
||||
|
||||
# GPU 1: layers 15–29
|
||||
- match:
|
||||
name: "^model\\.layers\\.(1[5-9]|2[0-9])\\."
|
||||
class: ktransformers.models.modeling_deepseek_v3.DeepseekV3RotaryEmbedding
|
||||
replace:
|
||||
class: ktransformers.operators.RoPE.YarnRotaryEmbeddingV3
|
||||
kwargs:
|
||||
generate_device: "cuda:1"
|
||||
prefill_device: "cuda:1"
|
||||
|
||||
# GPU 2: layers 30–44
|
||||
- match:
|
||||
name: "^model\\.layers\\.(3[0-9]|4[0-4])\\."
|
||||
class: ktransformers.models.modeling_deepseek_v3.DeepseekV3RotaryEmbedding
|
||||
replace:
|
||||
class: ktransformers.operators.RoPE.YarnRotaryEmbeddingV3
|
||||
kwargs:
|
||||
generate_device: "cuda:2"
|
||||
prefill_device: "cuda:2"
|
||||
|
||||
# GPU 3: layers 45–60
|
||||
- match:
|
||||
name: "^model\\.layers\\.(4[5-9]|5[0-9]|60)\\."
|
||||
class: ktransformers.models.modeling_deepseek_v3.DeepseekV3RotaryEmbedding
|
||||
replace:
|
||||
class: ktransformers.operators.RoPE.YarnRotaryEmbeddingV3
|
||||
kwargs:
|
||||
generate_device: "cuda:3"
|
||||
prefill_device: "cuda:3"
|
||||
|
||||
# === Linear Layers Replacement (excluding self_attn.kv_b_proj) ===
|
||||
|
||||
# GPU 0: layers 0–14
|
||||
- match:
|
||||
name: "^model\\.layers\\.([0-9]|1[0-4])\\.(?!self_attn\\.kv_b_proj).*$"
|
||||
class: torch.nn.Linear
|
||||
replace:
|
||||
class: ktransformers.operators.linear.KTransformersLinear
|
||||
kwargs:
|
||||
generate_device: "cuda:0"
|
||||
prefill_device: "cuda:0"
|
||||
generate_op: "KLinearTorch"
|
||||
prefill_op: "KLinearTorch"
|
||||
|
||||
# GPU 1: layers 15–29
|
||||
- match:
|
||||
name: "^model\\.layers\\.(1[5-9]|2[0-9])\\.(?!self_attn\\.kv_b_proj).*$"
|
||||
class: torch.nn.Linear
|
||||
replace:
|
||||
class: ktransformers.operators.linear.KTransformersLinear
|
||||
kwargs:
|
||||
generate_device: "cuda:1"
|
||||
prefill_device: "cuda:1"
|
||||
generate_op: "KLinearTorch"
|
||||
prefill_op: "KLinearTorch"
|
||||
|
||||
# GPU 2: layers 30–44
|
||||
- match:
|
||||
name: "^model\\.layers\\.(3[0-9]|4[0-4])\\.(?!self_attn\\.kv_b_proj).*$"
|
||||
class: torch.nn.Linear
|
||||
replace:
|
||||
class: ktransformers.operators.linear.KTransformersLinear
|
||||
kwargs:
|
||||
generate_device: "cuda:2"
|
||||
prefill_device: "cuda:2"
|
||||
generate_op: "KLinearTorch"
|
||||
prefill_op: "KLinearTorch"
|
||||
|
||||
# GPU 3: layers 45–60
|
||||
- match:
|
||||
name: "^model\\.layers\\.(4[5-9]|5[0-9]|60)\\.(?!self_attn\\.kv_b_proj).*$"
|
||||
class: torch.nn.Linear
|
||||
replace:
|
||||
class: ktransformers.operators.linear.KTransformersLinear
|
||||
kwargs:
|
||||
generate_device: "cuda:3"
|
||||
prefill_device: "cuda:3"
|
||||
generate_op: "KLinearTorch"
|
||||
prefill_op: "KLinearTorch"
|
||||
|
||||
# === MLP (MoE) Replacement ===
|
||||
|
||||
# GPU 0: layers 0–14
|
||||
- match:
|
||||
name: "^model\\.layers\\.([0-9]|1[0-4])\\.mlp$"
|
||||
class: ktransformers.models.modeling_deepseek_v3.DeepseekV3MoE
|
||||
replace:
|
||||
class: ktransformers.operators.experts.KDeepseekV3MoE
|
||||
kwargs:
|
||||
generate_device: "cuda:0"
|
||||
prefill_device: "cuda:0"
|
||||
|
||||
# GPU 1: layers 15–29
|
||||
- match:
|
||||
name: "^model\\.layers\\.(1[5-9]|2[0-9])\\.mlp$"
|
||||
class: ktransformers.models.modeling_deepseek_v3.DeepseekV3MoE
|
||||
replace:
|
||||
class: ktransformers.operators.experts.KDeepseekV3MoE
|
||||
kwargs:
|
||||
generate_device: "cuda:1"
|
||||
prefill_device: "cuda:1"
|
||||
|
||||
# GPU 2: layers 30–44
|
||||
- match:
|
||||
name: "^model\\.layers\\.(3[0-9]|4[0-4])\\.mlp$"
|
||||
class: ktransformers.models.modeling_deepseek_v3.DeepseekV3MoE
|
||||
replace:
|
||||
class: ktransformers.operators.experts.KDeepseekV3MoE
|
||||
kwargs:
|
||||
generate_device: "cuda:2"
|
||||
prefill_device: "cuda:2"
|
||||
|
||||
# GPU 3: layers 45–60
|
||||
- match:
|
||||
name: "^model\\.layers\\.(4[5-9]|5[0-9]|60)\\.mlp$"
|
||||
class: ktransformers.models.modeling_deepseek_v3.DeepseekV3MoE
|
||||
replace:
|
||||
class: ktransformers.operators.experts.KDeepseekV3MoE
|
||||
kwargs:
|
||||
generate_device: "cuda:3"
|
||||
prefill_device: "cuda:3"
|
||||
|
||||
# === MLP Gate Replacement ===
|
||||
|
||||
# GPU 0: layers 0–14
|
||||
- match:
|
||||
name: "^model\\.layers\\.([0-9]|1[0-4])\\.mlp\\.gate$"
|
||||
class: ktransformers.models.modeling_deepseek_v3.MoEGate
|
||||
replace:
|
||||
class: ktransformers.operators.gate.KMoEGate
|
||||
kwargs:
|
||||
generate_device: "cuda:0"
|
||||
prefill_device: "cuda:0"
|
||||
|
||||
# GPU 1: layers 15–29
|
||||
- match:
|
||||
name: "^model\\.layers\\.(1[5-9]|2[0-9])\\.mlp\\.gate$"
|
||||
class: ktransformers.models.modeling_deepseek_v3.MoEGate
|
||||
replace:
|
||||
class: ktransformers.operators.gate.KMoEGate
|
||||
kwargs:
|
||||
generate_device: "cuda:1"
|
||||
prefill_device: "cuda:1"
|
||||
|
||||
# GPU 2: layers 30–44
|
||||
- match:
|
||||
name: "^model\\.layers\\.(3[0-9]|4[0-4])\\.mlp\\.gate$"
|
||||
class: ktransformers.models.modeling_deepseek_v3.MoEGate
|
||||
replace:
|
||||
class: ktransformers.operators.gate.KMoEGate
|
||||
kwargs:
|
||||
generate_device: "cuda:2"
|
||||
prefill_device: "cuda:2"
|
||||
|
||||
# GPU 3: layers 45–60
|
||||
- match:
|
||||
name: "^model\\.layers\\.(4[5-9]|5[0-9]|60)\\.mlp\\.gate$"
|
||||
class: ktransformers.models.modeling_deepseek_v3.MoEGate
|
||||
replace:
|
||||
class: ktransformers.operators.gate.KMoEGate
|
||||
kwargs:
|
||||
generate_device: "cuda:3"
|
||||
prefill_device: "cuda:3"
|
||||
|
||||
# === MLP Experts Replacement ===
|
||||
# replace with marlin expert. Open and modify layer-num as needed.
|
||||
# Each layer of malin experts takes about 6GB of GPU memory.
|
||||
# !!!Do remember 'close' cuda graph if you are using marlin expert.!!!
|
||||
# !!!KExpertsTorch is untested, we don't have enough VRAM.!!!
|
||||
|
||||
# GPU 0: layers 3–4
|
||||
# - match:
|
||||
# name: "^model\\.layers\\.([3-4])\\.mlp\\.experts$"
|
||||
# replace:
|
||||
# class: ktransformers.operators.experts.KTransformersExperts
|
||||
# kwargs:
|
||||
# generate_device: "cuda:0"
|
||||
# generate_op: "KExpertsMarlin"
|
||||
# recursive: False
|
||||
|
||||
# # GPU 1: layers 15–17
|
||||
# - match:
|
||||
# name: "^model\\.layers\\.(1[5-7])\\.mlp\\.experts$"
|
||||
# replace:
|
||||
# class: ktransformers.operators.experts.KTransformersExperts
|
||||
# kwargs:
|
||||
# generate_device: "cuda:1"
|
||||
# generate_op: "KExpertsMarlin"
|
||||
# recursive: False
|
||||
|
||||
# # GPU 2: layers 30–32
|
||||
# - match:
|
||||
# name: "^model\\.layers\\.(3[0-2])\\.mlp\\.experts$"
|
||||
# replace:
|
||||
# class: ktransformers.operators.experts.KTransformersExperts
|
||||
# kwargs:
|
||||
# generate_device: "cuda:2"
|
||||
# generate_op: "KExpertsMarlin"
|
||||
# recursive: False
|
||||
|
||||
# # GPU 3: layers 45–46
|
||||
# - match:
|
||||
# name: "^model\\.layers\\.(4[5-6])\\.mlp\\.experts$"
|
||||
# replace:
|
||||
# class: ktransformers.operators.experts.KTransformersExperts
|
||||
# kwargs:
|
||||
# generate_device: "cuda:3"
|
||||
# generate_op: "KExpertsMarlin"
|
||||
# recursive: False
|
||||
|
||||
|
||||
# === MLP Experts Replacement ===
|
||||
|
||||
# GPU 0: layers 0–14
|
||||
- match:
|
||||
name: "^model\\.layers\\.([0-9]|1[0-4])\\.mlp\\.experts$"
|
||||
replace:
|
||||
class: ktransformers.operators.experts.KTransformersExperts
|
||||
kwargs:
|
||||
prefill_device: "cuda:0"
|
||||
prefill_op: "KExpertsTorch"
|
||||
generate_device: "cpu"
|
||||
generate_op: "KSFTExpertsCPU"
|
||||
out_device: "cuda:0"
|
||||
backend: "AMXInt8" # or "AMXBF16" or "llamafile" (default)
|
||||
recursive: False
|
||||
|
||||
# GPU 1: layers 15–29
|
||||
- match:
|
||||
name: "^model\\.layers\\.(1[5-9]|2[0-9])\\.mlp\\.experts$"
|
||||
replace:
|
||||
class: ktransformers.operators.experts.KTransformersExperts
|
||||
kwargs:
|
||||
prefill_device: "cuda:1"
|
||||
prefill_op: "KExpertsTorch"
|
||||
generate_device: "cpu"
|
||||
generate_op: "KSFTExpertsCPU"
|
||||
out_device: "cuda:1"
|
||||
backend: "AMXInt8" # or "AMXBF16" or "llamafile" (default)
|
||||
recursive: False
|
||||
|
||||
# GPU 2: layers 30–44
|
||||
- match:
|
||||
name: "^model\\.layers\\.(3[0-9]|4[0-4])\\.mlp\\.experts$"
|
||||
replace:
|
||||
class: ktransformers.operators.experts.KTransformersExperts
|
||||
kwargs:
|
||||
prefill_device: "cuda:2"
|
||||
prefill_op: "KExpertsTorch"
|
||||
generate_device: "cpu"
|
||||
generate_op: "KSFTExpertsCPU"
|
||||
out_device: "cuda:2"
|
||||
backend: "AMXInt8" # or "AMXBF16" or "llamafile" (default)
|
||||
recursive: False
|
||||
|
||||
# GPU 3: layers 45–60
|
||||
- match:
|
||||
name: "^model\\.layers\\.(4[5-9]|5[0-9]|60)\\.mlp\\.experts$"
|
||||
replace:
|
||||
class: ktransformers.operators.experts.KTransformersExperts
|
||||
kwargs:
|
||||
prefill_device: "cuda:3"
|
||||
prefill_op: "KExpertsTorch"
|
||||
generate_device: "cpu"
|
||||
generate_op: "KSFTExpertsCPU"
|
||||
out_device: "cuda:3"
|
||||
backend: "AMXInt8" # or "AMXBF16" or "llamafile" (default)
|
||||
recursive: False
|
||||
|
||||
# === Self-Attention Replacement ===
|
||||
|
||||
# GPU 0: layers 0–14
|
||||
- match:
|
||||
name: "^model\\.layers\\.([0-9]|1[0-4])\\.self_attn$"
|
||||
replace:
|
||||
class: ktransformers.operators.attention.KDeepseekV2Attention
|
||||
kwargs:
|
||||
generate_device: "cuda:0"
|
||||
prefill_device: "cuda:0"
|
||||
absorb_for_prefill: False
|
||||
|
||||
# GPU 1: layers 15–29
|
||||
- match:
|
||||
name: "^model\\.layers\\.(1[5-9]|2[0-9])\\.self_attn$"
|
||||
replace:
|
||||
class: ktransformers.operators.attention.KDeepseekV2Attention
|
||||
kwargs:
|
||||
generate_device: "cuda:1"
|
||||
prefill_device: "cuda:1"
|
||||
absorb_for_prefill: False
|
||||
|
||||
# GPU 2: layers 30–44
|
||||
- match:
|
||||
name: "^model\\.layers\\.(3[0-9]|4[0-4])\\.self_attn$"
|
||||
replace:
|
||||
class: ktransformers.operators.attention.KDeepseekV2Attention
|
||||
kwargs:
|
||||
generate_device: "cuda:2"
|
||||
prefill_device: "cuda:2"
|
||||
absorb_for_prefill: False
|
||||
|
||||
# GPU 3: layers 45–60
|
||||
- match:
|
||||
name: "^model\\.layers\\.(4[5-9]|5[0-9]|60)\\.self_attn$"
|
||||
replace:
|
||||
class: ktransformers.operators.attention.KDeepseekV2Attention
|
||||
kwargs:
|
||||
generate_device: "cuda:3"
|
||||
prefill_device: "cuda:3"
|
||||
absorb_for_prefill: False
|
||||
|
||||
# === Overall Model Replacement with Transfer Map ===
|
||||
|
||||
- match:
|
||||
name: "^model$"
|
||||
replace:
|
||||
class: "ktransformers.operators.models.KDeepseekV2Model"
|
||||
kwargs:
|
||||
per_layer_prefill_intput_threshold: 0 # 0 means close layer‐wise prefill
|
||||
transfer_map:
|
||||
15: "cuda:1" # Layers 15+ on GPU 1
|
||||
30: "cuda:2" # Layers 30+ on GPU 2
|
||||
45: "cuda:3" # Layers 45+ on GPU 3
|
||||
|
||||
# === Default Catch-All for Other Modules ===
|
||||
|
||||
# GPU 0: layers 0–14
|
||||
- match:
|
||||
name: "^model\\.layers\\.([0-9]|1[0-4])\\."
|
||||
replace:
|
||||
class: "default"
|
||||
kwargs:
|
||||
generate_device: "cuda:0"
|
||||
prefill_device: "cuda:0"
|
||||
|
||||
# GPU 1: layers 15–29
|
||||
- match:
|
||||
name: "^model\\.layers\\.(1[5-9]|2[0-9])\\."
|
||||
replace:
|
||||
class: "default"
|
||||
kwargs:
|
||||
generate_device: "cuda:1"
|
||||
prefill_device: "cuda:1"
|
||||
|
||||
# GPU 2: layers 30–44
|
||||
- match:
|
||||
name: "^model\\.layers\\.(3[0-9]|4[0-4])\\."
|
||||
replace:
|
||||
class: "default"
|
||||
kwargs:
|
||||
generate_device: "cuda:2"
|
||||
prefill_device: "cuda:2"
|
||||
|
||||
- match:
|
||||
name: "^lm_head"
|
||||
class: torch.nn.Linear
|
||||
replace:
|
||||
class: ktransformers.operators.linear.KTransformersLinear
|
||||
kwargs:
|
||||
generate_device: "cuda:3"
|
||||
prefill_device: "cuda:3"
|
||||
generate_op: "KLinearTorch"
|
||||
prefill_op: "KLinearTorch"
|
||||
|
||||
# For final modules (model.norm), ensure they are on GPU 3 (as in your original config)
|
||||
- match:
|
||||
name: "(^model\\.layers\\.(4[5-9]|5[0-9]|60)\\.)|(^model\\.norm)"
|
||||
replace:
|
||||
class: "default"
|
||||
kwargs:
|
||||
generate_device: "cuda:3"
|
||||
prefill_device: "cuda:3"
|
||||
@ -0,0 +1,156 @@
|
||||
- match:
|
||||
name: "^model.embed_tokens"
|
||||
replace:
|
||||
class: "default"
|
||||
kwargs:
|
||||
generate_device: "cpu"
|
||||
prefill_device: "cpu"
|
||||
|
||||
- match:
|
||||
name: "^model\\.layers\\.(0|[1-9]|[12][0-9])\\."
|
||||
class: ktransformers.models.modeling_deepseek_v3.DeepseekV3RotaryEmbedding
|
||||
replace:
|
||||
class: ktransformers.operators.RoPE.YarnRotaryEmbeddingV3
|
||||
kwargs:
|
||||
generate_device: "cuda:0"
|
||||
prefill_device: "cuda:0"
|
||||
- match:
|
||||
name: "^model\\.layers\\.([3456][0-9])\\."
|
||||
class: ktransformers.models.modeling_deepseek_v3.DeepseekV3RotaryEmbedding
|
||||
replace:
|
||||
class: ktransformers.operators.RoPE.YarnRotaryEmbeddingV3
|
||||
kwargs:
|
||||
generate_device: "cuda:1"
|
||||
prefill_device: "cuda:1"
|
||||
|
||||
- match:
|
||||
name: "^model\\.layers\\.(0|[1-9]|[12][0-9])\\.(?!self_attn\\.kv_b_proj).*$" # regular expression
|
||||
class: torch.nn.Linear # only match modules matching name and class simultaneously
|
||||
replace:
|
||||
class: ktransformers.operators.linear.KTransformersLinear # optimized Kernel on quantized data types
|
||||
kwargs:
|
||||
generate_device: "cuda:0"
|
||||
prefill_device: "cuda:0"
|
||||
generate_op: "KLinearTorch"
|
||||
prefill_op: "KLinearTorch"
|
||||
|
||||
- match:
|
||||
name: "^model\\.layers\\.([3456][0-9])\\.(?!self_attn\\.kv_b_proj).*$" # regular expression
|
||||
class: torch.nn.Linear # only match modules matching name and class simultaneously
|
||||
replace:
|
||||
class: ktransformers.operators.linear.KTransformersLinear # optimized Kernel on quantized data types
|
||||
kwargs:
|
||||
generate_device: "cuda:1"
|
||||
prefill_device: "cuda:1"
|
||||
generate_op: "KLinearTorch"
|
||||
prefill_op: "KLinearTorch"
|
||||
|
||||
- match:
|
||||
name: "^model\\.layers\\.(0|[1-9]|[12][0-9])\\.mlp$"
|
||||
class: ktransformers.models.modeling_deepseek_v3.DeepseekV3MoE
|
||||
replace:
|
||||
class: ktransformers.operators.experts.KDeepseekV3MoE # mlp module with custom forward function
|
||||
kwargs:
|
||||
generate_device: "cuda:0"
|
||||
prefill_device: "cuda:0"
|
||||
- match:
|
||||
name: "^model\\.layers\\.([3456][0-9])\\.mlp$"
|
||||
class: ktransformers.models.modeling_deepseek_v3.DeepseekV3MoE
|
||||
replace:
|
||||
class: ktransformers.operators.experts.KDeepseekV3MoE # mlp module with custom forward function
|
||||
kwargs:
|
||||
generate_device: "cuda:1"
|
||||
prefill_device: "cuda:1"
|
||||
|
||||
- match:
|
||||
name: "^model\\.layers\\.(0|[1-9]|[12][0-9])\\.mlp\\.gate$"
|
||||
class: ktransformers.models.modeling_deepseek_v3.MoEGate
|
||||
replace:
|
||||
class: ktransformers.operators.gate.KMoEGate
|
||||
kwargs:
|
||||
generate_device: "cuda:0"
|
||||
prefill_device: "cuda:0"
|
||||
- match:
|
||||
name: "^model\\.layers\\.([3456][0-9])\\.mlp\\.gate$"
|
||||
class: ktransformers.models.modeling_deepseek_v3.MoEGate
|
||||
replace:
|
||||
class: ktransformers.operators.gate.KMoEGate # mlp module with custom forward function
|
||||
kwargs:
|
||||
generate_device: "cuda:1"
|
||||
prefill_device: "cuda:1"
|
||||
|
||||
- match:
|
||||
name: "^model\\.layers\\.(0|[1-9]|[12][0-9])\\.mlp\\.experts$"
|
||||
replace:
|
||||
class: ktransformers.operators.experts.KTransformersExperts # custom MoE Kernel with expert paralleism
|
||||
kwargs:
|
||||
prefill_device: "cuda:0"
|
||||
prefill_op: "KExpertsTorch"
|
||||
generate_device: "cpu"
|
||||
generate_op: "KSFTExpertsCPU"
|
||||
out_device: "cuda:0"
|
||||
backend: "AMXInt8" # or "AMXBF16" or "llamafile" (default)
|
||||
recursive: False # don't recursively inject submodules of this module
|
||||
|
||||
- match:
|
||||
name: "^model\\.layers\\.([3456][0-9])\\.mlp\\.experts$"
|
||||
replace:
|
||||
class: ktransformers.operators.experts.KTransformersExperts # custom MoE Kernel with expert paralleism
|
||||
kwargs:
|
||||
prefill_device: "cuda:1"
|
||||
prefill_op: "KExpertsTorch"
|
||||
generate_device: "cpu"
|
||||
generate_op: "KSFTExpertsCPU"
|
||||
out_device: "cuda:1"
|
||||
backend: "AMXInt8" # or "AMXBF16" or "llamafile" (default)
|
||||
recursive: False # don't recursively inject submodules of this module
|
||||
|
||||
- match:
|
||||
name: "^model\\.layers\\.(0|[1-9]|[12][0-9])\\.self_attn$"
|
||||
replace:
|
||||
class: ktransformers.operators.attention.KDeepseekV2Attention # optimized MLA implementation
|
||||
kwargs:
|
||||
generate_device: "cuda:0"
|
||||
prefill_device: "cuda:0"
|
||||
- match:
|
||||
name: "^model\\.layers\\.([3456][0-9])\\.self_attn$"
|
||||
replace:
|
||||
class: ktransformers.operators.attention.KDeepseekV2Attention # optimized MLA implementation
|
||||
kwargs:
|
||||
generate_device: "cuda:1"
|
||||
prefill_device: "cuda:1"
|
||||
- match:
|
||||
name: "^model$"
|
||||
replace:
|
||||
class: "ktransformers.operators.models.KDeepseekV2Model"
|
||||
kwargs:
|
||||
per_layer_prefill_intput_threshold: 0 # 0 is close layer wise prefill
|
||||
transfer_map:
|
||||
30: "cuda:1"
|
||||
|
||||
- match:
|
||||
name: "^model\\.layers\\.(0|[1-9]|[12][0-9])\\."
|
||||
replace:
|
||||
class: "default"
|
||||
kwargs:
|
||||
generate_device: "cuda:0"
|
||||
prefill_device: "cuda:0"
|
||||
|
||||
- match:
|
||||
name: "^lm_head"
|
||||
class: torch.nn.Linear
|
||||
replace:
|
||||
class: ktransformers.operators.linear.KTransformersLinear
|
||||
kwargs:
|
||||
generate_device: "cuda:1"
|
||||
prefill_device: "cuda:1"
|
||||
generate_op: "KLinearTorch"
|
||||
prefill_op: "KLinearTorch"
|
||||
|
||||
- match:
|
||||
name: "(^model\\.layers\\.([3456][0-9])\\.)|(model.norm)"
|
||||
replace:
|
||||
class: "default"
|
||||
kwargs:
|
||||
generate_device: "cuda:1"
|
||||
prefill_device: "cuda:1"
|
||||
77
examples/kt_optimize_rules/DeepSeek-V3-Chat-sft-amx.yaml
Normal file
77
examples/kt_optimize_rules/DeepSeek-V3-Chat-sft-amx.yaml
Normal file
@ -0,0 +1,77 @@
|
||||
- match:
|
||||
class: ktransformers.models.modeling_deepseek_v3.DeepseekV3RotaryEmbedding
|
||||
replace:
|
||||
class: ktransformers.operators.RoPE.YarnRotaryEmbeddingV3
|
||||
kwargs:
|
||||
generate_device: "cuda"
|
||||
prefill_device: "cuda"
|
||||
|
||||
- match:
|
||||
name: "^lm_head$" # regular expression
|
||||
class: torch.nn.Linear # only match modules matching name and class simultaneously
|
||||
replace:
|
||||
class: ktransformers.operators.linear.KTransformersLinear # optimized Kernel on quantized data types
|
||||
kwargs:
|
||||
generate_device: "cuda"
|
||||
prefill_device: "cuda"
|
||||
generate_op: "KLinearTorch"
|
||||
prefill_op: "KLinearTorch"
|
||||
|
||||
- match:
|
||||
name: "^model\\.layers\\.(?!.*self_attn\\.kv_b_proj).*$" # regular expression
|
||||
class: torch.nn.Linear # only match modules matching name and class simultaneously
|
||||
replace:
|
||||
class: ktransformers.operators.linear.KTransformersLinear # optimized Kernel on quantized data types
|
||||
kwargs:
|
||||
generate_device: "cuda"
|
||||
prefill_device: "cuda"
|
||||
generate_op: "KLinearTorch"
|
||||
prefill_op: "KLinearTorch"
|
||||
- match:
|
||||
name: "^model\\.layers\\..*\\.mlp$"
|
||||
class: ktransformers.models.modeling_deepseek_v3.DeepseekV3MoE
|
||||
replace:
|
||||
class: ktransformers.operators.experts.KDeepseekV3MoE # mlp module with custom forward function
|
||||
kwargs:
|
||||
generate_device: "cuda"
|
||||
prefill_device: "cuda"
|
||||
- match:
|
||||
class: ktransformers.models.modeling_deepseek_v3.MoEGate
|
||||
replace:
|
||||
class: ktransformers.operators.gate.KMoEGate
|
||||
kwargs:
|
||||
generate_device: "cuda:0"
|
||||
prefill_device: "cuda:0"
|
||||
- match:
|
||||
name: "^model\\.layers\\..*\\.mlp\\.experts$"
|
||||
replace:
|
||||
class: ktransformers.operators.experts.KTransformersExperts # custom MoE Kernel with expert paralleism
|
||||
kwargs:
|
||||
prefill_device: "cuda"
|
||||
prefill_op: "KExpertsTorch"
|
||||
generate_device: "cpu"
|
||||
generate_op: "KSFTExpertsCPU"
|
||||
out_device: "cuda"
|
||||
backend: "AMXInt8" # or "AMXBF16" or "llamafile" (default)
|
||||
recursive: False # don't recursively inject submodules of this module
|
||||
- match:
|
||||
name: "^model\\.layers\\..*\\.self_attn$"
|
||||
replace:
|
||||
class: ktransformers.operators.attention.KDeepseekV2Attention # optimized MLA implementation
|
||||
kwargs:
|
||||
generate_device: "cuda"
|
||||
prefill_device: "cuda"
|
||||
absorb_for_prefill: False # change this to True to enable long context(prefill may slower).
|
||||
- match:
|
||||
name: "^model$"
|
||||
replace:
|
||||
class: "ktransformers.operators.models.KDeepseekV2Model"
|
||||
kwargs:
|
||||
per_layer_prefill_intput_threshold: 0 # 0 is close layer wise prefill
|
||||
- match:
|
||||
name: "^model.embed_tokens"
|
||||
replace:
|
||||
class: "default"
|
||||
kwargs:
|
||||
generate_device: "cpu"
|
||||
prefill_device: "cpu"
|
||||
52
examples/train_lora/deepseek2_lora_sft_kt.yaml
Normal file
52
examples/train_lora/deepseek2_lora_sft_kt.yaml
Normal file
@ -0,0 +1,52 @@
|
||||
### model
|
||||
model_name_or_path: deepseek-ai/DeepSeek-V2-Lite
|
||||
trust_remote_code: true
|
||||
|
||||
### method
|
||||
stage: sft
|
||||
do_train: true
|
||||
finetuning_type: lora
|
||||
lora_rank: 8
|
||||
lora_target: all
|
||||
|
||||
### dataset
|
||||
dataset: identity
|
||||
template: deepseek
|
||||
cutoff_len: 2048
|
||||
max_samples: 100000
|
||||
overwrite_cache: true
|
||||
preprocessing_num_workers: 16
|
||||
dataloader_num_workers: 4
|
||||
|
||||
### output
|
||||
output_dir: saves/Kllama_deepseekV2
|
||||
logging_steps: 10
|
||||
save_steps: 500
|
||||
plot_loss: true
|
||||
overwrite_output_dir: true
|
||||
save_only_model: false
|
||||
report_to: none # choices: [none, wandb, tensorboard, swanlab, mlflow]
|
||||
|
||||
### train
|
||||
per_device_train_batch_size: 1
|
||||
gradient_accumulation_steps: 8
|
||||
learning_rate: 1.0e-4
|
||||
num_train_epochs: 3.0
|
||||
lr_scheduler_type: cosine
|
||||
warmup_ratio: 0.1
|
||||
bf16: true
|
||||
ddp_timeout: 180000000
|
||||
resume_from_checkpoint: null
|
||||
|
||||
### ktransformers
|
||||
use_kt: true # use KTransformers as LoRA sft backend
|
||||
kt_optimize_rule: examples/kt_optimize_rules/DeepSeek-V2-Lite-Chat-sft-amx.yaml
|
||||
cpu_infer: 32
|
||||
chunk_size: 8192
|
||||
|
||||
### eval
|
||||
# eval_dataset: alpaca_en_demo
|
||||
# val_size: 0.1
|
||||
# per_device_eval_batch_size: 1
|
||||
# eval_strategy: steps
|
||||
# eval_steps: 500
|
||||
52
examples/train_lora/deepseek3_lora_sft_kt.yaml
Normal file
52
examples/train_lora/deepseek3_lora_sft_kt.yaml
Normal file
@ -0,0 +1,52 @@
|
||||
### model
|
||||
model_name_or_path: opensourcerelease/DeepSeek-V3-bf16
|
||||
trust_remote_code: true
|
||||
|
||||
### method
|
||||
stage: sft
|
||||
do_train: true
|
||||
finetuning_type: lora
|
||||
lora_rank: 8
|
||||
lora_target: all
|
||||
|
||||
### dataset
|
||||
dataset: identity
|
||||
template: deepseek
|
||||
cutoff_len: 2048
|
||||
max_samples: 100000
|
||||
overwrite_cache: true
|
||||
preprocessing_num_workers: 16
|
||||
dataloader_num_workers: 4
|
||||
|
||||
### output
|
||||
output_dir: saves/Kllama_deepseekV3
|
||||
logging_steps: 10
|
||||
save_steps: 500
|
||||
plot_loss: true
|
||||
overwrite_output_dir: true
|
||||
save_only_model: false
|
||||
report_to: none # choices: [none, wandb, tensorboard, swanlab, mlflow]
|
||||
|
||||
### train
|
||||
per_device_train_batch_size: 1
|
||||
gradient_accumulation_steps: 8
|
||||
learning_rate: 1.0e-4
|
||||
num_train_epochs: 3.0
|
||||
lr_scheduler_type: cosine
|
||||
warmup_ratio: 0.1
|
||||
bf16: true
|
||||
ddp_timeout: 180000000
|
||||
resume_from_checkpoint: null
|
||||
|
||||
### ktransformers
|
||||
use_kt: true # use KTransformers as LoRA sft backend
|
||||
kt_optimize_rule: examples/kt_optimize_rules/DeepSeek-V3-Chat-sft-amx-multi-gpu.yaml
|
||||
cpu_infer: 32
|
||||
chunk_size: 8192
|
||||
|
||||
### eval
|
||||
# eval_dataset: alpaca_en_demo
|
||||
# val_size: 0.1
|
||||
# per_device_eval_batch_size: 1
|
||||
# eval_strategy: steps
|
||||
# eval_steps: 500
|
||||
@ -71,6 +71,16 @@ class ChatModel:
|
||||
"SGLang not install, you may need to run `pip install sglang[all]`\n"
|
||||
"or try to use HuggingFace backend: --infer_backend huggingface"
|
||||
) from e
|
||||
elif model_args.infer_backend == EngineName.KT:
|
||||
try:
|
||||
from .kt_engine import KTransformersEngine
|
||||
|
||||
self.engine: BaseEngine = KTransformersEngine(model_args, data_args, finetuning_args, generating_args)
|
||||
except ImportError as e:
|
||||
raise ImportError(
|
||||
"KTransformers not install, you may need to run `pip install ktransformers`\n"
|
||||
"or try to use HuggingFace backend: --infer_backend huggingface"
|
||||
) from e
|
||||
else:
|
||||
raise NotImplementedError(f"Unknown backend: {model_args.infer_backend}")
|
||||
|
||||
|
||||
270
src/llamafactory/chat/kt_engine.py
Normal file
270
src/llamafactory/chat/kt_engine.py
Normal file
@ -0,0 +1,270 @@
|
||||
# Copyright 2025 the KVCache.AI team, Approaching AI, and the LlamaFactory team.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
import asyncio
|
||||
import os
|
||||
import platform
|
||||
from collections.abc import AsyncGenerator
|
||||
from threading import Thread
|
||||
from typing import TYPE_CHECKING, Any, Optional
|
||||
|
||||
import torch
|
||||
from typing_extensions import override
|
||||
|
||||
from ..data import get_template_and_fix_tokenizer
|
||||
from ..extras import logging
|
||||
from ..extras.constants import EngineName
|
||||
from ..model import load_model, load_tokenizer
|
||||
from .base_engine import BaseEngine, Response
|
||||
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from transformers import PreTrainedTokenizer
|
||||
from trl import PreTrainedModelWrapper
|
||||
|
||||
from ..data.mm_plugin import AudioInput, ImageInput, VideoInput
|
||||
from ..hparams import DataArguments, FinetuningArguments, GeneratingArguments, ModelArguments
|
||||
|
||||
from ktransformers.operators.flashinfer_wrapper import flashinfer_enabled
|
||||
from ktransformers.server.config.config import Config
|
||||
from ktransformers.util.utils import (
|
||||
get_compute_capability,
|
||||
prefill_and_generate_capture,
|
||||
)
|
||||
from ktransformers.util.vendors import GPUVendor, device_manager
|
||||
|
||||
|
||||
logger = logging.get_logger(__name__)
|
||||
|
||||
|
||||
class KTransformersEngine(BaseEngine):
|
||||
def __init__(
|
||||
self,
|
||||
model_args: "ModelArguments",
|
||||
data_args: "DataArguments",
|
||||
finetuning_args: "FinetuningArguments",
|
||||
generating_args: "GeneratingArguments",
|
||||
) -> None:
|
||||
self.name = EngineName.KT
|
||||
self.can_generate = finetuning_args.stage == "sft"
|
||||
|
||||
tok_mod = load_tokenizer(model_args)
|
||||
self.tokenizer = tok_mod["tokenizer"]
|
||||
self.tokenizer.padding_side = "left" if self.can_generate else "right"
|
||||
self.template = get_template_and_fix_tokenizer(self.tokenizer, data_args)
|
||||
|
||||
self.model = load_model(
|
||||
self.tokenizer, model_args, finetuning_args,
|
||||
is_trainable=False, add_valuehead=(not self.can_generate)
|
||||
)
|
||||
|
||||
self.generating_args = generating_args.to_dict()
|
||||
self.max_new_tokens = model_args.kt_maxlen
|
||||
self.use_cuda_graph = model_args.kt_use_cuda_graph
|
||||
self.mode = model_args.kt_mode
|
||||
self.force_think = model_args.kt_force_think
|
||||
self.chunk_size = model_args.chunk_size
|
||||
|
||||
try:
|
||||
asyncio.get_event_loop()
|
||||
except RuntimeError:
|
||||
loop = asyncio.new_event_loop()
|
||||
asyncio.set_event_loop(loop)
|
||||
|
||||
self.semaphore = asyncio.Semaphore(int(os.getenv("MAX_CONCURRENT", "1")))
|
||||
|
||||
@staticmethod
|
||||
@torch.inference_mode()
|
||||
def _get_scores(
|
||||
model: "PreTrainedModelWrapper",
|
||||
tokenizer: "PreTrainedTokenizer",
|
||||
batch_input: list[str],
|
||||
input_kwargs: Optional[dict[str, Any]] = {},
|
||||
) -> list[float]:
|
||||
max_length: Optional[int] = input_kwargs.pop("max_length", None)
|
||||
device = getattr(model.pretrained_model, "device", "cuda")
|
||||
inputs = tokenizer(
|
||||
batch_input,
|
||||
padding=True,
|
||||
truncation=True,
|
||||
max_length=max_length or getattr(model.config, "max_position_embeddings", 1024),
|
||||
return_tensors="pt",
|
||||
add_special_tokens=False,
|
||||
).to(device)
|
||||
values: torch.Tensor = model(**inputs, return_dict=True, use_cache=False)[-1]
|
||||
scores = values.gather(dim=-1, index=(inputs["attention_mask"].sum(dim=-1, keepdim=True) - 1))
|
||||
return scores
|
||||
|
||||
async def _generate(
|
||||
self,
|
||||
messages: list[dict[str, str]],
|
||||
system: Optional[str] = None,
|
||||
tools: Optional[str] = None,
|
||||
**input_kwargs,
|
||||
) -> AsyncGenerator[str, None]:
|
||||
paired = messages + [{"role": "assistant", "content": ""}]
|
||||
prompt_ids, _ = self.template.encode_oneturn(self.tokenizer, paired, system, tools)
|
||||
prompt_len = len(prompt_ids)
|
||||
|
||||
max_length: Optional[int] = input_kwargs.pop("max_length", None)
|
||||
max_new_tokens: Optional[int] = input_kwargs.pop("max_new_tokens", None)
|
||||
|
||||
if "max_new_tokens" in self.generating_args:
|
||||
max_tokens = int(self.generating_args["max_new_tokens"])
|
||||
elif "max_length" in self.generating_args:
|
||||
gl = int(self.generating_args["max_length"])
|
||||
max_tokens = gl - prompt_len if gl > prompt_len else 1
|
||||
else:
|
||||
max_tokens = self.max_new_tokens or 256
|
||||
|
||||
if max_length is not None:
|
||||
max_tokens = max(max_length - prompt_len, 1)
|
||||
if max_new_tokens is not None:
|
||||
max_tokens = int(max_new_tokens)
|
||||
max_tokens = max(1, int(max_tokens))
|
||||
|
||||
if self.mode == "long_context":
|
||||
max_len_cfg = Config().long_context_config["max_seq_len"]
|
||||
need = prompt_len + max_tokens
|
||||
assert max_len_cfg > need, f"please set max_seq_len > {need} in ~/.ktransformers/config.yaml"
|
||||
|
||||
device = next(self.model.parameters()).device
|
||||
input_tensor = torch.tensor([prompt_ids], dtype=torch.long, device=device)
|
||||
if self.force_think:
|
||||
think = torch.tensor(
|
||||
[self.tokenizer.encode("<think>\n", add_special_tokens=False)],
|
||||
dtype=torch.long, device=device
|
||||
)
|
||||
input_tensor = torch.cat([input_tensor, think], dim=1)
|
||||
|
||||
use_flashinfer = (
|
||||
platform.system() != "Windows"
|
||||
and getattr(self.model.config, "architectures", [""])[0] in {"DeepseekV2ForCausalLM", "DeepseekV3ForCausalLM"}
|
||||
and flashinfer_enabled
|
||||
and get_compute_capability() >= 8
|
||||
and device_manager.gpu_vendor == GPUVendor.NVIDIA
|
||||
)
|
||||
|
||||
def make_gen():
|
||||
if use_flashinfer:
|
||||
return prefill_and_generate_capture(
|
||||
self.model, self.tokenizer, input_tensor, max_tokens, self.use_cuda_graph,
|
||||
mode=self.mode, force_think=self.force_think, chunk_size=self.chunk_size,
|
||||
use_flashinfer_mla=True,
|
||||
num_heads=self.model.config.num_attention_heads,
|
||||
head_dim_ckv=getattr(self.model.config, "kv_lora_rank", 0),
|
||||
head_dim_kpe=getattr(self.model.config, "qk_rope_head_dim", 0),
|
||||
q_head_dim=getattr(self.model.config, "qk_rope_head_dim", 0) + getattr(self.model.config, "qk_nope_head_dim", 0),
|
||||
echo_stream=False,
|
||||
)
|
||||
else:
|
||||
return prefill_and_generate_capture(
|
||||
self.model, self.tokenizer, input_tensor, max_tokens, self.use_cuda_graph,
|
||||
mode=self.mode, force_think=self.force_think, chunk_size=self.chunk_size,
|
||||
echo_stream=False,
|
||||
)
|
||||
|
||||
loop = asyncio.get_running_loop()
|
||||
q: asyncio.Queue[Optional[str]] = asyncio.Queue()
|
||||
|
||||
def producer():
|
||||
try:
|
||||
gen = make_gen()
|
||||
if hasattr(gen, "__aiter__"):
|
||||
async def drain_async():
|
||||
async for t in gen:
|
||||
loop.call_soon_threadsafe(q.put_nowait, t if isinstance(t, str) else str(t))
|
||||
asyncio.run(drain_async())
|
||||
elif hasattr(gen, "__iter__"):
|
||||
for t in gen:
|
||||
loop.call_soon_threadsafe(q.put_nowait, t if isinstance(t, str) else str(t))
|
||||
else:
|
||||
loop.call_soon_threadsafe(q.put_nowait, gen if isinstance(gen, str) else str(gen))
|
||||
finally:
|
||||
loop.call_soon_threadsafe(q.put_nowait, None)
|
||||
|
||||
Thread(target=producer, daemon=True).start()
|
||||
|
||||
while True:
|
||||
item = await q.get()
|
||||
if item is None:
|
||||
break
|
||||
yield item
|
||||
|
||||
@override
|
||||
async def chat(
|
||||
self,
|
||||
messages: list[dict[str, str]],
|
||||
system: Optional[str] = None,
|
||||
tools: Optional[str] = None,
|
||||
images: Optional[list["ImageInput"]] = None,
|
||||
videos: Optional[list["VideoInput"]] = None,
|
||||
audios: Optional[list["AudioInput"]] = None,
|
||||
**input_kwargs,
|
||||
) -> list["Response"]:
|
||||
if not self.can_generate:
|
||||
raise ValueError("The current model does not support `chat`.")
|
||||
async with self.semaphore:
|
||||
produced = ""
|
||||
final_text = ""
|
||||
async for t in self._generate(messages, system, tools, **input_kwargs):
|
||||
delta = t
|
||||
produced = produced + delta
|
||||
if delta:
|
||||
final_text += delta
|
||||
|
||||
prompt_ids, _ = self.template.encode_oneturn(
|
||||
self.tokenizer, messages + [{"role": "assistant", "content": ""}], system, tools
|
||||
)
|
||||
return [
|
||||
Response(
|
||||
response_text=final_text,
|
||||
response_length=len(self.tokenizer.encode(final_text, add_special_tokens=False)),
|
||||
prompt_length=len(prompt_ids),
|
||||
finish_reason="stop",
|
||||
)
|
||||
]
|
||||
|
||||
@override
|
||||
async def stream_chat(
|
||||
self,
|
||||
messages: list[dict[str, str]],
|
||||
system: Optional[str] = None,
|
||||
tools: Optional[str] = None,
|
||||
images: Optional[list["ImageInput"]] = None,
|
||||
videos: Optional[list["VideoInput"]] = None,
|
||||
audios: Optional[list["AudioInput"]] = None,
|
||||
**input_kwargs,
|
||||
) -> AsyncGenerator[str, None]:
|
||||
if not self.can_generate:
|
||||
raise ValueError("The current model does not support `stream_chat`.")
|
||||
async with self.semaphore:
|
||||
produced = ""
|
||||
async for t in self._generate(messages, system, tools, **input_kwargs):
|
||||
delta = t[len(produced):] if t.startswith(produced) else t
|
||||
produced = t
|
||||
if delta:
|
||||
yield delta
|
||||
|
||||
@override
|
||||
async def get_scores(
|
||||
self,
|
||||
batch_input: list[str],
|
||||
**input_kwargs,
|
||||
) -> list[float]:
|
||||
if self.can_generate:
|
||||
raise ValueError("Cannot get scores using an auto-regressive model.")
|
||||
args = (self.model, self.tokenizer, batch_input, input_kwargs)
|
||||
async with self.semaphore:
|
||||
return await asyncio.to_thread(self._get_scores, *args)
|
||||
@ -120,6 +120,7 @@ class EngineName(str, Enum):
|
||||
HF = "huggingface"
|
||||
VLLM = "vllm"
|
||||
SGLANG = "sglang"
|
||||
KT = "ktransformers"
|
||||
|
||||
|
||||
class DownloadSource(str, Enum):
|
||||
|
||||
@ -312,6 +312,8 @@ def use_openmind() -> bool:
|
||||
def use_ray() -> bool:
|
||||
return is_env_enabled("USE_RAY")
|
||||
|
||||
def use_kt() -> bool:
|
||||
return is_env_enabled("USE_KT")
|
||||
|
||||
def find_available_port() -> int:
|
||||
r"""Find an available port on the local machine."""
|
||||
|
||||
@ -82,6 +82,10 @@ def is_ray_available():
|
||||
return _is_package_available("ray")
|
||||
|
||||
|
||||
def is_kt_available():
|
||||
return _is_package_available("ktransformers")
|
||||
|
||||
|
||||
def is_requests_available():
|
||||
return _is_package_available("requests")
|
||||
|
||||
|
||||
@ -439,7 +439,6 @@ class SwanLabArguments:
|
||||
metadata={"help": "The Lark(飞书) secret for SwanLab."},
|
||||
)
|
||||
|
||||
|
||||
@dataclass
|
||||
class FinetuningArguments(
|
||||
SwanLabArguments,
|
||||
|
||||
@ -1,4 +1,4 @@
|
||||
# Copyright 2025 HuggingFace Inc. and the LlamaFactory team.
|
||||
# Copyright 2025 HuggingFace Inc., the KVCache.AI team, Approaching AI, and the LlamaFactory team.
|
||||
#
|
||||
# This code is inspired by the HuggingFace's transformers library.
|
||||
# https://github.com/huggingface/transformers/blob/v4.40.0/examples/pytorch/language-modeling/run_clm.py
|
||||
@ -475,9 +475,51 @@ class SGLangArguments:
|
||||
self.sglang_config = _convert_str_dict(json.loads(self.sglang_config))
|
||||
|
||||
|
||||
@dataclass
|
||||
class KTransformersArguments:
|
||||
r"""Arguments pertaining to the KT training."""
|
||||
|
||||
use_kt: bool = field(
|
||||
default=False,
|
||||
metadata={"help": "Whether To Use KTransformers Optimizations For LoRA Training."},
|
||||
)
|
||||
kt_optimize_rule: Optional[str] = field(
|
||||
default=None,
|
||||
metadata={"help": "Path To The KTransformers Optimize Rule; See https://github.com/kvcache-ai/ktransformers/."},
|
||||
)
|
||||
cpu_infer: Optional[int] = field(
|
||||
default=32,
|
||||
metadata={"help": "Number Of CPU Cores Used For Computation."},
|
||||
)
|
||||
chunk_size: Optional[int] = field(
|
||||
default=8192,
|
||||
metadata={"help": "Chunk Size Used For CPU Compute In KTransformers."},
|
||||
)
|
||||
mode: Optional[str] = field(
|
||||
default="normal",
|
||||
metadata={"help": "Normal Or Long_Context For Llama Models."},
|
||||
)
|
||||
|
||||
kt_maxlen: int = field(
|
||||
default=4096,
|
||||
metadata={"help": "Maximum Sequence (Prompt + Response) Length Of The KT Engine."},
|
||||
)
|
||||
kt_use_cuda_graph: bool = field(
|
||||
default=True,
|
||||
metadata={"help": "Whether To Use CUDA Graphs For The KT Engine."},
|
||||
)
|
||||
kt_mode: str = field(
|
||||
default="normal",
|
||||
metadata={"help": "Normal Or Long_Context Mode For The KT Engine."},
|
||||
)
|
||||
kt_force_think: bool = field(
|
||||
default=False,
|
||||
metadata={"help": "Force-Think Toggle For The KT Engine."},
|
||||
)
|
||||
|
||||
@dataclass
|
||||
class ModelArguments(
|
||||
SGLangArguments, VllmArguments, ExportArguments, ProcessorArguments, QuantizationArguments, BaseModelArguments
|
||||
SGLangArguments, VllmArguments, KTransformersArguments, ExportArguments, ProcessorArguments, QuantizationArguments, BaseModelArguments
|
||||
):
|
||||
r"""Arguments pertaining to which model/config/tokenizer we are going to fine-tune or infer.
|
||||
|
||||
|
||||
@ -156,6 +156,9 @@ def _check_extra_dependencies(
|
||||
finetuning_args: "FinetuningArguments",
|
||||
training_args: Optional["TrainingArguments"] = None,
|
||||
) -> None:
|
||||
if model_args.use_kt:
|
||||
check_version("ktransformers", mandatory=True)
|
||||
|
||||
if model_args.use_unsloth:
|
||||
check_version("unsloth", mandatory=True)
|
||||
|
||||
@ -282,13 +285,16 @@ def get_train_args(args: Optional[Union[dict[str, Any], list[str]]] = None) -> _
|
||||
if model_args.shift_attn:
|
||||
raise ValueError("PPO training is incompatible with S^2-Attn.")
|
||||
|
||||
if finetuning_args.reward_model_type == "lora" and model_args.use_kt:
|
||||
raise ValueError("KTransformers does not support lora reward model.")
|
||||
|
||||
if finetuning_args.reward_model_type == "lora" and model_args.use_unsloth:
|
||||
raise ValueError("Unsloth does not support lora reward model.")
|
||||
|
||||
if training_args.report_to and training_args.report_to[0] not in ["wandb", "tensorboard"]:
|
||||
raise ValueError("PPO only accepts wandb or tensorboard logger.")
|
||||
|
||||
if training_args.parallel_mode == ParallelMode.NOT_DISTRIBUTED:
|
||||
if not model_args.use_kt and training_args.parallel_mode == ParallelMode.NOT_DISTRIBUTED:
|
||||
raise ValueError("Please launch distributed training with `llamafactory-cli` or `torchrun`.")
|
||||
|
||||
if training_args.deepspeed and training_args.parallel_mode != ParallelMode.DISTRIBUTED:
|
||||
@ -350,6 +356,9 @@ def get_train_args(args: Optional[Union[dict[str, Any], list[str]]] = None) -> _
|
||||
if model_args.use_unsloth and is_deepspeed_zero3_enabled():
|
||||
raise ValueError("Unsloth is incompatible with DeepSpeed ZeRO-3.")
|
||||
|
||||
if model_args.use_kt and is_deepspeed_zero3_enabled():
|
||||
raise ValueError("KTransformers is incompatible with DeepSpeed ZeRO-3.")
|
||||
|
||||
if data_args.neat_packing and is_transformers_version_greater_than("4.53.0"):
|
||||
raise ValueError("Neat packing is incompatible with transformers>=4.53.0.")
|
||||
|
||||
|
||||
@ -90,7 +90,6 @@ class RayArguments:
|
||||
elif self.ray_storage_filesystem == "gs" or self.ray_storage_filesystem == "gcs":
|
||||
self.ray_storage_filesystem = fs.GcsFileSystem()
|
||||
|
||||
|
||||
@dataclass
|
||||
class TrainingArguments(RayArguments, BaseTrainingArguments):
|
||||
r"""Arguments pertaining to the trainer."""
|
||||
|
||||
@ -38,7 +38,7 @@ USAGE = (
|
||||
def launch():
|
||||
from .extras import logging
|
||||
from .extras.env import VERSION, print_env
|
||||
from .extras.misc import find_available_port, get_device_count, is_env_enabled, use_ray
|
||||
from .extras.misc import find_available_port, get_device_count, is_env_enabled, use_kt, use_ray
|
||||
|
||||
logger = logging.get_logger(__name__)
|
||||
WELCOME = (
|
||||
@ -57,7 +57,7 @@ def launch():
|
||||
if is_env_enabled("USE_MCA"): # force use torchrun
|
||||
os.environ["FORCE_TORCHRUN"] = "1"
|
||||
|
||||
if command == "train" and (is_env_enabled("FORCE_TORCHRUN") or (get_device_count() > 1 and not use_ray())):
|
||||
if command == "train" and (is_env_enabled("FORCE_TORCHRUN") or (get_device_count() > 1 and not use_ray() and not use_kt())):
|
||||
# launch distributed training
|
||||
nnodes = os.getenv("NNODES", "1")
|
||||
node_rank = os.getenv("NODE_RANK", "0")
|
||||
|
||||
@ -20,6 +20,8 @@ from peft import LoraConfig, LoraModel, OFTConfig, PeftModel, TaskType, get_peft
|
||||
from transformers.integrations import is_deepspeed_zero3_enabled
|
||||
|
||||
from ..extras import logging
|
||||
from ..extras.constants import EngineName
|
||||
from .model_utils.ktransformers import get_kt_peft_model, load_kt_peft_model
|
||||
from .model_utils.misc import find_all_linear_modules, find_expanded_modules
|
||||
from .model_utils.quantization import QuantizationMethod
|
||||
from .model_utils.unsloth import get_unsloth_peft_model, load_unsloth_peft_model
|
||||
@ -164,6 +166,10 @@ def _setup_lora_tuning(
|
||||
assert len(model_args.adapter_name_or_path) == 1, "Cannot use multiple adapters in DeepSpeed ZeRO-3."
|
||||
is_mergeable = False
|
||||
|
||||
if model_args.use_kt:
|
||||
assert len(model_args.adapter_name_or_path) == 1, "Up to now, KTransformers model only accepts a single adapter, for more features, you can contact with us."
|
||||
is_mergeable = False
|
||||
|
||||
if model_args.use_unsloth:
|
||||
assert len(model_args.adapter_name_or_path) == 1, "Unsloth model only accepts a single adapter."
|
||||
is_mergeable = False
|
||||
@ -182,6 +188,10 @@ def _setup_lora_tuning(
|
||||
"token": model_args.hf_hub_token,
|
||||
}
|
||||
|
||||
if model_args.use_kt:
|
||||
if model_args.infer_backend != EngineName.KT:
|
||||
raise ValueError("We should use ktransformers as backend to infer the adapter fine-tuned by ktransformers.")
|
||||
|
||||
for adapter in adapter_to_merge:
|
||||
model: LoraModel = PeftModel.from_pretrained(model, adapter, **init_kwargs)
|
||||
model = model.merge_and_unload()
|
||||
@ -190,7 +200,9 @@ def _setup_lora_tuning(
|
||||
logger.info_rank0(f"Merged {len(adapter_to_merge)} adapter(s).")
|
||||
|
||||
if adapter_to_resume is not None: # resume lora training
|
||||
if model_args.use_unsloth:
|
||||
if model_args.use_kt:
|
||||
model = load_kt_peft_model(model_args, model)
|
||||
elif model_args.use_unsloth:
|
||||
model = load_unsloth_peft_model(config, model_args, finetuning_args, is_trainable=is_trainable)
|
||||
else:
|
||||
model = PeftModel.from_pretrained(model, adapter_to_resume, is_trainable=is_trainable, **init_kwargs)
|
||||
@ -203,6 +215,16 @@ def _setup_lora_tuning(
|
||||
else:
|
||||
target_modules = finetuning_args.lora_target
|
||||
|
||||
if model_args.use_kt:
|
||||
new_list = []
|
||||
for m in target_modules:
|
||||
if m in ('down_proj', 'up_proj', 'gate_proj'):
|
||||
new_list.extend([f"mlp.{m}", f"shared_experts.{m}"])
|
||||
elif m not in ('generate_linear', 'orig_module', 'prefill_linear'):
|
||||
new_list.append(m)
|
||||
|
||||
target_modules[:] = new_list
|
||||
|
||||
if finetuning_args.use_llama_pro:
|
||||
target_modules = find_expanded_modules(model, target_modules, finetuning_args.freeze_trainable_layers)
|
||||
|
||||
@ -245,7 +267,21 @@ def _setup_lora_tuning(
|
||||
"modules_to_save": finetuning_args.additional_target,
|
||||
}
|
||||
|
||||
if model_args.use_unsloth:
|
||||
if model_args.use_kt:
|
||||
if finetuning_args.finetuning_type == "oft":
|
||||
raise ValueError("KTransformers is currently not supported for OFT.")
|
||||
if finetuning_args.finetuning_type == "lora":
|
||||
peft_config = LoraConfig(
|
||||
task_type=TaskType.CAUSAL_LM,
|
||||
inference_mode=False,
|
||||
**peft_kwargs,
|
||||
)
|
||||
else:
|
||||
raise ValueError("KTransformers is currently only supported for LoRA.")
|
||||
|
||||
model = get_kt_peft_model(model, peft_config)
|
||||
print(f"KT_model:{model}")
|
||||
elif model_args.use_unsloth:
|
||||
if finetuning_args.finetuning_type == "oft":
|
||||
raise ValueError("Unsloth is currently not supported for OFT.")
|
||||
|
||||
|
||||
@ -31,6 +31,7 @@ from trl import AutoModelForCausalLMWithValueHead
|
||||
from ..extras import logging
|
||||
from ..extras.misc import count_parameters, skip_check_imports, try_download_model_from_other_hub
|
||||
from .adapter import init_adapter
|
||||
from .model_utils.ktransformers import load_kt_pretrained_model
|
||||
from .model_utils.liger_kernel import apply_liger_kernel
|
||||
from .model_utils.misc import register_autoclass
|
||||
from .model_utils.mod import convert_pretrained_model_to_mod, load_mod_pretrained_model
|
||||
@ -143,7 +144,11 @@ def load_model(
|
||||
|
||||
model = None
|
||||
lazy_load = False
|
||||
if model_args.use_unsloth:
|
||||
if model_args.use_kt:
|
||||
from ktransformers.sft.monkey_patch_torch_module import install_patch
|
||||
install_patch()
|
||||
model = load_kt_pretrained_model(config, model_args)
|
||||
elif model_args.use_unsloth:
|
||||
if model_args.adapter_name_or_path is not None:
|
||||
lazy_load = True
|
||||
elif is_trainable:
|
||||
|
||||
159
src/llamafactory/model/model_utils/ktransformers.py
Normal file
159
src/llamafactory/model/model_utils/ktransformers.py
Normal file
@ -0,0 +1,159 @@
|
||||
# Copyright 2025 the KVCache.AI team, Approaching AI, and the LlamaFactory team.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
import importlib.util as _u
|
||||
from typing import TYPE_CHECKING, Any, Optional
|
||||
|
||||
import torch
|
||||
|
||||
from ...extras import logging
|
||||
from ...extras.misc import get_current_device
|
||||
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from ...hparams import FinetuningArguments, ModelArguments
|
||||
|
||||
from transformers import AutoConfig, AutoModelForCausalLM, PretrainedConfig, PreTrainedModel
|
||||
|
||||
|
||||
KT_AVAILABLE = _u.find_spec("ktransformers") is not None
|
||||
if KT_AVAILABLE:
|
||||
from ktransformers.models.modeling_deepseek import DeepseekV2ForCausalLM
|
||||
from ktransformers.models.modeling_deepseek_v3 import DeepseekV3ForCausalLM
|
||||
from ktransformers.models.modeling_llama import LlamaForCausalLM
|
||||
from ktransformers.models.modeling_mixtral import MixtralForCausalLM
|
||||
from ktransformers.models.modeling_qwen2_moe import Qwen2MoeForCausalLM
|
||||
from ktransformers.optimize.optimize import optimize_and_load_gguf
|
||||
from ktransformers.server.config.config import Config
|
||||
from ktransformers.sft.lora import inject_lora_layer
|
||||
from ktransformers.util.custom_loader import GGUFLoader, SafeTensorLoader
|
||||
from ktransformers.util.globals import GLOBAL_CONFIG
|
||||
from ktransformers.util.utils import load_weights
|
||||
|
||||
logger = logging.get_logger(__name__)
|
||||
|
||||
def _get_kt_kwargs(
|
||||
config: "PretrainedConfig",
|
||||
model_name_or_path: str,
|
||||
model_args: "ModelArguments",
|
||||
finetuning_args: "FinetuningArguments",
|
||||
) -> dict[str, Any]:
|
||||
return {
|
||||
"model_name": model_name_or_path,
|
||||
"max_seq_length": model_args.model_max_length or 4096,
|
||||
"dtype": model_args.compute_dtype,
|
||||
"load_in_4bit": model_args.quantization_bit == 4,
|
||||
"token": model_args.hf_hub_token,
|
||||
"full_finetuning": finetuning_args.finetuning_type == "full",
|
||||
"device_map": {"": get_current_device()},
|
||||
"rope_scaling": getattr(config, "rope_scaling", None),
|
||||
"fix_tokenizer": False,
|
||||
"trust_remote_code": model_args.trust_remote_code,
|
||||
"use_gradient_checkpointing": "ktransformers",
|
||||
}
|
||||
|
||||
|
||||
def load_kt_pretrained_model(
|
||||
config: "PretrainedConfig", model_args: "ModelArguments"
|
||||
) -> Optional["PreTrainedModel"]:
|
||||
r"""Optionally load pretrained model with KTransformers. Used in training."""
|
||||
custom_models = {
|
||||
"DeepseekV2ForCausalLM": DeepseekV2ForCausalLM,
|
||||
"DeepseekV3ForCausalLM": DeepseekV3ForCausalLM,
|
||||
"Qwen2MoeForCausalLM": Qwen2MoeForCausalLM,
|
||||
"LlamaForCausalLM": LlamaForCausalLM,
|
||||
"MixtralForCausalLM": MixtralForCausalLM,
|
||||
}
|
||||
Config().cpu_infer = model_args.cpu_infer
|
||||
Config().chunk_size = model_args.chunk_size
|
||||
config = AutoConfig.from_pretrained(model_args.model_name_or_path, trust_remote_code=model_args.trust_remote_code)
|
||||
|
||||
if model_args.mode == 'long_context':
|
||||
assert config.architectures[0] == "LlamaForCausalLM", "only LlamaForCausalLM support long_context mode"
|
||||
torch.set_default_dtype(torch.float16)
|
||||
else:
|
||||
torch.set_default_dtype(config.torch_dtype)
|
||||
|
||||
with torch.device("meta"):
|
||||
if config.architectures[0] in custom_models:
|
||||
print("using custom modeling_xxx.py.")
|
||||
if (
|
||||
"Qwen2Moe" in config.architectures[0]
|
||||
): # Qwen2Moe must use flash_attention_2 to avoid overflow.
|
||||
config._attn_implementation = "flash_attention_2"
|
||||
if "Llama" in config.architectures[0]:
|
||||
config._attn_implementation = "eager"
|
||||
if "Mixtral" in config.architectures[0]:
|
||||
config._attn_implementation = "flash_attention_2"
|
||||
model = custom_models[config.architectures[0]](config)
|
||||
else:
|
||||
attn_implementation = "flash_attention_2"
|
||||
model = AutoModelForCausalLM.from_config(
|
||||
config, trust_remote_code=True, attn_implementation=attn_implementation
|
||||
)
|
||||
|
||||
optimize_config_path = model_args.kt_optimize_rule
|
||||
gguf_path = model_args.model_name_or_path
|
||||
|
||||
assert optimize_config_path is not None, "optimize_config_path must be provided (path to YAML rules file)."
|
||||
assert gguf_path is not None, "gguf_path must be provided (path to a folder or .gguf file)."
|
||||
|
||||
GLOBAL_CONFIG._config["mod"] = "infer"
|
||||
optimize_and_load_gguf(model, optimize_config_path, gguf_path, config)
|
||||
|
||||
return model
|
||||
|
||||
|
||||
def get_kt_peft_model(
|
||||
model: "PreTrainedModel", peft_kwargs: dict[str, Any]
|
||||
) -> "PreTrainedModel":
|
||||
r"""Get the peft model for the pretrained model with KTransformers. Used in training."""
|
||||
from ktransformers.sft.peft_utils.mapping import get_peft_model
|
||||
|
||||
return get_peft_model(model, peft_kwargs)
|
||||
|
||||
|
||||
def load_kt_peft_model(
|
||||
model_args: "ModelArguments", model: "PreTrainedModel",
|
||||
) -> "PreTrainedModel":
|
||||
r"""Load peft model with KTransformers. Used in both training and inference."""
|
||||
load_adapter_name_or_path = model_args.adapter_name_or_path[0]
|
||||
if load_adapter_name_or_path.endswith('.gguf'):
|
||||
inject_lora_layer(model, load_adapter_name_or_path)
|
||||
adapter_gguf_loader = GGUFLoader(load_adapter_name_or_path)
|
||||
load_weights(model, adapter_gguf_loader, adapter_gguf=True)
|
||||
model.train()
|
||||
else:
|
||||
inject_lora_layer(model, load_adapter_name_or_path)
|
||||
|
||||
adapter_loader = SafeTensorLoader(load_adapter_name_or_path)
|
||||
device = next(model.parameters()).device
|
||||
for key in adapter_loader.tensor_file_map.keys():
|
||||
try:
|
||||
tensor = adapter_loader.load_tensor(key, device=device)
|
||||
|
||||
model_key = key.replace("base_model.model.", "")
|
||||
model_key = model_key.replace(".weight", ".default.weight")
|
||||
model_key = model_key.replace(".default.default.weight", ".default.weight")
|
||||
|
||||
param = model.get_parameter(model_key)
|
||||
param.data.copy_(tensor.data)
|
||||
|
||||
print(f"Loaded adapter weight: {key} -> {model_key}")
|
||||
except AttributeError:
|
||||
print(f"Skipping {key}: not a model parameter")
|
||||
except KeyError:
|
||||
print(f"Key not found in model: {model_key} (original: {key})")
|
||||
|
||||
return model
|
||||
18
src/llamafactory/train/ksft/__init__.py
Normal file
18
src/llamafactory/train/ksft/__init__.py
Normal file
@ -0,0 +1,18 @@
|
||||
# Copyright 2025 the KVCache.AI team, Approaching AI, and the LlamaFactory team.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
from .workflow import run_sft
|
||||
|
||||
|
||||
__all__ = ["run_sft"]
|
||||
110
src/llamafactory/train/ksft/workflow.py
Normal file
110
src/llamafactory/train/ksft/workflow.py
Normal file
@ -0,0 +1,110 @@
|
||||
# Copyright 2025 the KVCache.AI team, Approaching AI, and the LlamaFactory team.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
from typing import TYPE_CHECKING, Optional
|
||||
|
||||
from ...data import SFTDataCollatorWith4DAttentionMask, get_dataset, get_template_and_fix_tokenizer
|
||||
from ...extras.constants import IGNORE_INDEX
|
||||
from ...extras.logging import get_logger
|
||||
from ...extras.misc import calculate_tps
|
||||
from ...extras.ploting import plot_loss
|
||||
from ...model import load_model, load_tokenizer
|
||||
from ..trainer_utils import create_modelcard_and_push
|
||||
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from transformers import Seq2SeqTrainingArguments, TrainerCallback
|
||||
|
||||
from ...hparams import DataArguments, FinetuningArguments, GeneratingArguments, ModelArguments
|
||||
|
||||
|
||||
logger = get_logger(__name__)
|
||||
|
||||
|
||||
def run_sft(
|
||||
model_args: "ModelArguments",
|
||||
data_args: "DataArguments",
|
||||
training_args: "Seq2SeqTrainingArguments",
|
||||
finetuning_args: "FinetuningArguments",
|
||||
generating_args: "GeneratingArguments",
|
||||
callbacks: Optional[list["TrainerCallback"]] = None,
|
||||
):
|
||||
tokenizer_module = load_tokenizer(model_args)
|
||||
tokenizer = tokenizer_module["tokenizer"]
|
||||
template = get_template_and_fix_tokenizer(tokenizer, data_args)
|
||||
dataset_module = get_dataset(template, model_args, data_args, training_args, stage="sft", **tokenizer_module)
|
||||
model = load_model(tokenizer, model_args, finetuning_args, training_args.do_train)
|
||||
|
||||
from ktransformers.util.globals import GLOBAL_CONFIG
|
||||
GLOBAL_CONFIG._config["mod"] = "sft"
|
||||
|
||||
if getattr(model, "is_quantized", False) and not training_args.do_train:
|
||||
setattr(model, "_hf_peft_config_loaded", True) # hack here: make model compatible with prediction
|
||||
|
||||
data_collator = SFTDataCollatorWith4DAttentionMask(
|
||||
template=template,
|
||||
model=model if not training_args.predict_with_generate else None,
|
||||
pad_to_multiple_of=8 if training_args.do_train else None, # for shift short attention
|
||||
label_pad_token_id=IGNORE_INDEX if data_args.ignore_pad_token_for_loss else tokenizer.pad_token_id,
|
||||
block_diag_attn=model_args.block_diag_attn,
|
||||
attn_implementation=getattr(model.config, "_attn_implementation", None),
|
||||
compute_dtype=model_args.compute_dtype,
|
||||
**tokenizer_module,
|
||||
)
|
||||
|
||||
# Metric utils
|
||||
metric_module = {}
|
||||
if training_args.predict_with_generate:
|
||||
raise NotImplementedError("`predict_with_generate` is not supported in KTransformers SFT yet. if you do need it, please open an issue.")
|
||||
elif finetuning_args.compute_accuracy:
|
||||
raise NotImplementedError("`compute_accuracy` is not supported in KTransformers SFT yet. if you do need it, please open an issue.")
|
||||
|
||||
# Initialize our Trainer
|
||||
from ktransformers.sft.lora import KTrainer
|
||||
trainer = KTrainer(
|
||||
model=model,
|
||||
args=training_args,
|
||||
tokenizer=tokenizer_module,
|
||||
data_collator=data_collator,
|
||||
callbacks=callbacks,
|
||||
**dataset_module,
|
||||
**metric_module,
|
||||
)
|
||||
|
||||
# Training
|
||||
if training_args.do_train:
|
||||
model.config.use_cache = False
|
||||
train_result = trainer.train(resume_from_checkpoint=training_args.resume_from_checkpoint)
|
||||
trainer.save_model()
|
||||
if finetuning_args.include_effective_tokens_per_second:
|
||||
train_result.metrics["effective_tokens_per_sec"] = calculate_tps(
|
||||
dataset_module["train_dataset"], train_result.metrics, stage="sft"
|
||||
)
|
||||
|
||||
trainer.log_metrics("train", train_result.metrics)
|
||||
trainer.save_metrics("train", train_result.metrics)
|
||||
trainer.save_state()
|
||||
if trainer.is_world_process_zero() and finetuning_args.plot_loss:
|
||||
keys = ["loss"]
|
||||
if isinstance(dataset_module.get("eval_dataset"), dict):
|
||||
keys += sum(
|
||||
[[f"eval_{key}_loss", f"eval_{key}_accuracy"] for key in dataset_module["eval_dataset"].keys()], []
|
||||
)
|
||||
else:
|
||||
keys += ["eval_loss", "eval_accuracy"]
|
||||
|
||||
plot_loss(training_args.output_dir, keys=keys)
|
||||
|
||||
# Create model card
|
||||
create_modelcard_and_push(trainer, model_args, data_args, training_args, finetuning_args)
|
||||
@ -100,6 +100,9 @@ def create_modelcard_and_push(
|
||||
if model_args.use_unsloth:
|
||||
kwargs["tags"] = kwargs["tags"] + ["unsloth"]
|
||||
|
||||
if model_args.use_kt:
|
||||
kwargs["tags"] = kwargs["tags"] + ["ktransformers"]
|
||||
|
||||
if not training_args.do_train:
|
||||
pass
|
||||
elif training_args.push_to_hub:
|
||||
|
||||
@ -1,4 +1,4 @@
|
||||
# Copyright 2025 the LlamaFactory team.
|
||||
# Copyright 2025 the KVCache.AI team, Approaching AI, and the LlamaFactory team.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
@ -24,7 +24,7 @@ from ..data import get_template_and_fix_tokenizer
|
||||
from ..extras import logging
|
||||
from ..extras.constants import V_HEAD_SAFE_WEIGHTS_NAME, V_HEAD_WEIGHTS_NAME
|
||||
from ..extras.misc import infer_optim_dtype
|
||||
from ..extras.packages import is_mcore_adapter_available, is_ray_available
|
||||
from ..extras.packages import is_kt_available, is_mcore_adapter_available, is_ray_available
|
||||
from ..hparams import get_infer_args, get_ray_args, get_train_args, read_args
|
||||
from ..model import load_model, load_tokenizer
|
||||
from .callbacks import LogCallback, PissaConvertCallback, ReporterCallback
|
||||
@ -85,6 +85,12 @@ def _training_function(config: dict[str, Any]) -> None:
|
||||
elif finetuning_args.stage == "pt":
|
||||
run_pt(model_args, data_args, training_args, finetuning_args, callbacks)
|
||||
elif finetuning_args.stage == "sft":
|
||||
if model_args.use_kt:
|
||||
if not is_kt_available():
|
||||
raise ImportError("KTransformers is not installed. Please install it with `pip install ktransformers`.")
|
||||
from .ksft.workflow import run_sft as run_sft_kt
|
||||
run_sft_kt(model_args, data_args, training_args, finetuning_args, generating_args, callbacks)
|
||||
|
||||
run_sft(model_args, data_args, training_args, finetuning_args, generating_args, callbacks)
|
||||
elif finetuning_args.stage == "rm":
|
||||
run_rm(model_args, data_args, training_args, finetuning_args, callbacks)
|
||||
|
||||
Loading…
x
Reference in New Issue
Block a user