mirror of
https://github.com/hiyouga/LLaMA-Factory.git
synced 2025-10-14 23:58:11 +08:00
remove checksum and fix ui args
Former-commit-id: 0cfdeb1d30efb63211434bc4656bceb59e666289
This commit is contained in:
parent
1ce400bddf
commit
8f1ba07b30
@ -366,7 +366,7 @@ See [examples/README.md](examples/README.md) for advanced usage (including distr
|
||||
#### Use local environment
|
||||
|
||||
```bash
|
||||
CUDA_VISIBLE_DEVICES=0 GRADIO_SERVER_PORT=7860 GRADIO_SHARE=1 llamafactory-cli webui
|
||||
CUDA_VISIBLE_DEVICES=0 GRADIO_SHARE=1 llamafactory-cli webui
|
||||
```
|
||||
|
||||
<details><summary>For Alibaba Cloud PAI or AutoDL users</summary>
|
||||
@ -374,7 +374,7 @@ CUDA_VISIBLE_DEVICES=0 GRADIO_SERVER_PORT=7860 GRADIO_SHARE=1 llamafactory-cli w
|
||||
If you encountered display problems in LLaMA Board on Alibaba Cloud PAI, try using the following command to set environment variables before starting LLaMA Board:
|
||||
|
||||
```bash
|
||||
export GRADIO_ROOT_PATH=/${JUPYTER_NAME}/proxy/7860/
|
||||
export GRADIO_SERVER_PORT=7860 GRADIO_ROOT_PATH=/${JUPYTER_NAME}/proxy/7860/
|
||||
```
|
||||
|
||||
If you are using AutoDL, please install a specific version of Gradio:
|
||||
|
@ -366,7 +366,7 @@ CUDA_VISIBLE_DEVICES=0 llamafactory-cli export examples/merge_lora/llama3_lora_s
|
||||
#### 使用本地环境
|
||||
|
||||
```bash
|
||||
CUDA_VISIBLE_DEVICES=0 GRADIO_SERVER_PORT=7860 GRADIO_SHARE=1 llamafactory-cli webui
|
||||
CUDA_VISIBLE_DEVICES=0 GRADIO_SHARE=1 llamafactory-cli webui
|
||||
```
|
||||
|
||||
<details><summary>阿里云 PAI 和 AutoDL 用户指南</summary>
|
||||
@ -374,7 +374,7 @@ CUDA_VISIBLE_DEVICES=0 GRADIO_SERVER_PORT=7860 GRADIO_SHARE=1 llamafactory-cli w
|
||||
如果您在阿里云 PAI 上使用 LLaMA Board 时遇到显示问题,请尝试在启动前使用以下命令设置环境变量:
|
||||
|
||||
```bash
|
||||
export GRADIO_ROOT_PATH=/${JUPYTER_NAME}/proxy/7860/
|
||||
export GRADIO_SERVER_PORT=7860 GRADIO_ROOT_PATH=/${JUPYTER_NAME}/proxy/7860/
|
||||
```
|
||||
|
||||
如果您正在使用 AutoDL,请安装下述 Gradio 版本:
|
||||
|
@ -11,7 +11,7 @@ from .aligner import align_dataset
|
||||
from .parser import get_dataset_list
|
||||
from .preprocess import get_preprocess_and_print_func
|
||||
from .template import get_template_and_fix_tokenizer
|
||||
from .utils import checksum, merge_dataset
|
||||
from .utils import merge_dataset
|
||||
|
||||
|
||||
if TYPE_CHECKING:
|
||||
@ -61,8 +61,6 @@ def load_single_dataset(
|
||||
|
||||
if data_path is None:
|
||||
raise ValueError("File extension must be txt, csv, json or jsonl.")
|
||||
|
||||
checksum(data_files, dataset_attr.file_sha1)
|
||||
else:
|
||||
raise NotImplementedError
|
||||
|
||||
|
@ -21,7 +21,6 @@ class DatasetAttr:
|
||||
load_from: Literal["hf_hub", "ms_hub", "script", "file"]
|
||||
dataset_name: str
|
||||
""" extra configs """
|
||||
file_sha1: Optional[str] = None
|
||||
subset: Optional[str] = None
|
||||
folder: Optional[str] = None
|
||||
ranking: bool = False
|
||||
@ -99,7 +98,6 @@ def get_dataset_list(data_args: "DataArguments") -> List["DatasetAttr"]:
|
||||
else:
|
||||
dataset_attr = DatasetAttr("file", dataset_name=dataset_info[name]["file_name"])
|
||||
|
||||
dataset_attr.set_attr("file_sha1", dataset_info[name])
|
||||
dataset_attr.set_attr("subset", dataset_info[name])
|
||||
dataset_attr.set_attr("folder", dataset_info[name])
|
||||
dataset_attr.set_attr("ranking", dataset_info[name], default=False)
|
||||
|
@ -26,21 +26,6 @@ class Role(str, Enum):
|
||||
OBSERVATION = "observation"
|
||||
|
||||
|
||||
def checksum(data_files: List[str], file_sha1: Optional[str] = None) -> None:
|
||||
if file_sha1 is None:
|
||||
logger.warning("Checksum failed: missing SHA-1 hash value in dataset_info.json.")
|
||||
return
|
||||
|
||||
if len(data_files) != 1:
|
||||
logger.warning("Checksum failed: too many files.")
|
||||
return
|
||||
|
||||
with open(data_files[0], "rb") as f:
|
||||
sha1 = hashlib.sha1(f.read()).hexdigest()
|
||||
if sha1 != file_sha1:
|
||||
logger.warning("Checksum failed: mismatched SHA-1 hash value at {}.".format(data_files[0]))
|
||||
|
||||
|
||||
def infer_max_len(source_len: int, target_len: int, max_len: int, reserved_label_len: int) -> Tuple[int, int]:
|
||||
max_target_len = int(max_len * (target_len / (source_len + target_len)))
|
||||
max_target_len = max(max_target_len, reserved_label_len)
|
||||
|
@ -71,10 +71,12 @@ def create_web_demo() -> gr.Blocks:
|
||||
|
||||
|
||||
def run_web_ui() -> None:
|
||||
gradio_share = bool(int(os.environ.get("GRADIO_SHARE", "0")))
|
||||
server_name = os.environ.get("GRADIO_SERVER_NAME", "0.0.0.0")
|
||||
create_ui().queue().launch(server_name=server_name)
|
||||
create_ui().queue().launch(share=gradio_share, server_name=server_name)
|
||||
|
||||
|
||||
def run_web_demo() -> None:
|
||||
gradio_share = bool(int(os.environ.get("GRADIO_SHARE", "0")))
|
||||
server_name = os.environ.get("GRADIO_SERVER_NAME", "0.0.0.0")
|
||||
create_web_demo().queue().launch(server_name=server_name)
|
||||
create_web_demo().queue().launch(share=gradio_share, server_name=server_name)
|
||||
|
@ -4,8 +4,9 @@ from llmtuner.webui.interface import create_ui
|
||||
|
||||
|
||||
def main():
|
||||
gradio_share = bool(int(os.environ.get("GRADIO_SHARE", "0")))
|
||||
server_name = os.environ.get("GRADIO_SERVER_NAME", "0.0.0.0")
|
||||
create_ui().queue().launch(server_name=server_name)
|
||||
create_ui().queue().launch(share=gradio_share, server_name=server_name)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
|
Loading…
x
Reference in New Issue
Block a user