mirror of
https://github.com/hiyouga/LLaMA-Factory.git
synced 2025-09-12 16:12:48 +08:00
Merge pull request #5574 from BUAADreamer/main
support llava-next(video)/video-llava Former-commit-id: c7b334e698b776f83ee8e9c99c144d2a4dd6d6a0
This commit is contained in:
commit
8d20d6c95c
@ -163,7 +163,7 @@ Compared to ChatGLM's [P-Tuning](https://github.com/THUDM/ChatGLM2-6B/tree/main/
|
||||
## Supported Models
|
||||
|
||||
| Model | Model size | Template |
|
||||
| ----------------------------------------------------------------- | -------------------------------- | --------- |
|
||||
| ----------------------------------------------------------------- | -------------------------------- | ---------------- |
|
||||
| [Baichuan 2](https://huggingface.co/baichuan-inc) | 7B/13B | baichuan2 |
|
||||
| [BLOOM/BLOOMZ](https://huggingface.co/bigscience) | 560M/1.1B/1.7B/3B/7.1B/176B | - |
|
||||
| [ChatGLM3](https://huggingface.co/THUDM) | 6B | chatglm3 |
|
||||
@ -177,6 +177,8 @@ Compared to ChatGLM's [P-Tuning](https://github.com/THUDM/ChatGLM2-6B/tree/main/
|
||||
| [Llama 2](https://huggingface.co/meta-llama) | 7B/13B/70B | llama2 |
|
||||
| [Llama 3-3.2](https://huggingface.co/meta-llama) | 1B/3B/8B/70B | llama3 |
|
||||
| [LLaVA-1.5](https://huggingface.co/llava-hf) | 7B/13B | llava |
|
||||
| [LLaVA-NeXT](https://huggingface.co/llava-hf) | 7B/8B/13B/34B/72B/110B | llava_next |
|
||||
| [LLaVA-NeXT-Video](https://huggingface.co/llava-hf) | 7B/34B | llava_next_video |
|
||||
| [MiniCPM](https://huggingface.co/openbmb) | 1B/2B/4B | cpm/cpm3 |
|
||||
| [Mistral/Mixtral](https://huggingface.co/mistralai) | 7B/8x7B/8x22B | mistral |
|
||||
| [OLMo](https://huggingface.co/allenai) | 1B/7B | - |
|
||||
|
@ -164,7 +164,7 @@ https://github.com/user-attachments/assets/e6ce34b0-52d5-4f3e-a830-592106c4c272
|
||||
## 模型
|
||||
|
||||
| 模型名 | 模型大小 | Template |
|
||||
| ----------------------------------------------------------------- | -------------------------------- | --------- |
|
||||
| ----------------------------------------------------------------- | -------------------------------- | ---------------- |
|
||||
| [Baichuan 2](https://huggingface.co/baichuan-inc) | 7B/13B | baichuan2 |
|
||||
| [BLOOM/BLOOMZ](https://huggingface.co/bigscience) | 560M/1.1B/1.7B/3B/7.1B/176B | - |
|
||||
| [ChatGLM3](https://huggingface.co/THUDM) | 6B | chatglm3 |
|
||||
@ -178,6 +178,8 @@ https://github.com/user-attachments/assets/e6ce34b0-52d5-4f3e-a830-592106c4c272
|
||||
| [Llama 2](https://huggingface.co/meta-llama) | 7B/13B/70B | llama2 |
|
||||
| [Llama 3-3.2](https://huggingface.co/meta-llama) | 1B/3B/8B/70B | llama3 |
|
||||
| [LLaVA-1.5](https://huggingface.co/llava-hf) | 7B/13B | llava |
|
||||
| [LLaVA-NeXT](https://huggingface.co/llava-hf) | 7B/8B/13B/34B/72B/110B | llava_next |
|
||||
| [LLaVA-NeXT-Video](https://huggingface.co/llava-hf) | 7B/34B | llava_next_video |
|
||||
| [MiniCPM](https://huggingface.co/openbmb) | 1B/2B/4B | cpm/cpm3 |
|
||||
| [Mistral/Mixtral](https://huggingface.co/mistralai) | 7B/8x7B/8x22B | mistral |
|
||||
| [OLMo](https://huggingface.co/allenai) | 1B/7B | - |
|
||||
|
@ -19,3 +19,4 @@ fire
|
||||
packaging
|
||||
pyyaml
|
||||
numpy<2.0.0
|
||||
av
|
||||
|
@ -4,6 +4,7 @@ from io import BytesIO
|
||||
from typing import TYPE_CHECKING, Dict, List, Optional, Sequence, Tuple, TypedDict, Union
|
||||
|
||||
import numpy as np
|
||||
from transformers.image_utils import get_image_size, to_numpy_array
|
||||
from typing_extensions import override
|
||||
|
||||
from ..extras.constants import IGNORE_INDEX, IMAGE_PLACEHOLDER, VIDEO_PLACEHOLDER
|
||||
@ -157,6 +158,7 @@ class BasePlugin:
|
||||
It holds num_patches == torch.prod(image_grid_thw)
|
||||
"""
|
||||
image_processor: "BaseImageProcessor" = getattr(processor, "image_processor")
|
||||
video_processor: "BaseImageProcessor" = getattr(processor, "video_processor", image_processor)
|
||||
input_dict = {"images": None} # default key
|
||||
if len(images) != 0:
|
||||
images = self._regularize_images(
|
||||
@ -174,10 +176,16 @@ class BasePlugin:
|
||||
)
|
||||
input_dict["videos"] = videos
|
||||
|
||||
if input_dict.get("images", None) is not None or input_dict.get("videos", None) is not None:
|
||||
return image_processor(**input_dict, return_tensors="pt")
|
||||
else:
|
||||
return {}
|
||||
mm_inputs = {}
|
||||
if image_processor != video_processor:
|
||||
if input_dict.get("images") is not None:
|
||||
mm_inputs.update(image_processor(input_dict["images"], return_tensors="pt"))
|
||||
if input_dict.get("videos") is not None:
|
||||
mm_inputs.update(video_processor(input_dict["videos"], return_tensors="pt"))
|
||||
elif input_dict.get("images") is not None or input_dict.get("videos") is not None: # same processor (qwen2-vl)
|
||||
mm_inputs.update(image_processor(**input_dict, return_tensors="pt"))
|
||||
|
||||
return mm_inputs
|
||||
|
||||
def process_messages(
|
||||
self,
|
||||
@ -263,6 +271,122 @@ class LlavaPlugin(BasePlugin):
|
||||
return self._get_mm_inputs(images, videos, processor)
|
||||
|
||||
|
||||
class LlavaNextPlugin(BasePlugin):
|
||||
@override
|
||||
def process_messages(
|
||||
self,
|
||||
messages: Sequence[Dict[str, str]],
|
||||
images: Sequence["ImageInput"],
|
||||
videos: Sequence["VideoInput"],
|
||||
processor: Optional["ProcessorMixin"],
|
||||
) -> List[Dict[str, str]]:
|
||||
self._validate_input(images, videos)
|
||||
num_image_tokens = 0
|
||||
messages = deepcopy(messages)
|
||||
mm_inputs = self._get_mm_inputs(images, videos, processor)
|
||||
if "image_sizes" in mm_inputs:
|
||||
image_sizes = iter(mm_inputs["image_sizes"])
|
||||
if "pixel_values" in mm_inputs:
|
||||
height, width = get_image_size(to_numpy_array(mm_inputs["pixel_values"][0][0]))
|
||||
for message in messages:
|
||||
content = message["content"]
|
||||
while self.image_token in content:
|
||||
image_size = next(image_sizes)
|
||||
orig_height, orig_width = image_size
|
||||
image_seqlen = processor._get_number_of_features(orig_height, orig_width, height, width)
|
||||
if processor.vision_feature_select_strategy == "default":
|
||||
image_seqlen -= 1
|
||||
num_image_tokens += 1
|
||||
content = content.replace(self.image_token, "{{image}}" * image_seqlen, 1)
|
||||
|
||||
message["content"] = content.replace("{{image}}", self.image_token)
|
||||
|
||||
if len(images) != num_image_tokens:
|
||||
raise ValueError("The number of images does not match the number of {} tokens".format(IMAGE_PLACEHOLDER))
|
||||
return messages
|
||||
|
||||
@override
|
||||
def get_mm_inputs(
|
||||
self,
|
||||
images: Sequence["ImageInput"],
|
||||
videos: Sequence["VideoInput"],
|
||||
imglens: Sequence[int],
|
||||
vidlens: Sequence[int],
|
||||
seqlens: Sequence[int],
|
||||
processor: Optional["ProcessorMixin"],
|
||||
) -> Dict[str, Union[List[int], "torch.Tensor"]]:
|
||||
self._validate_input(images, videos)
|
||||
res = self._get_mm_inputs(images, videos, processor)
|
||||
return res
|
||||
|
||||
|
||||
class LlavaNextVideoPlugin(BasePlugin):
|
||||
@override
|
||||
def process_messages(
|
||||
self,
|
||||
messages: Sequence[Dict[str, str]],
|
||||
images: Sequence["ImageInput"],
|
||||
videos: Sequence["VideoInput"],
|
||||
processor: Optional["ProcessorMixin"],
|
||||
) -> List[Dict[str, str]]:
|
||||
self._validate_input(images, videos)
|
||||
num_image_tokens = 0
|
||||
num_video_tokens = 0
|
||||
messages = deepcopy(messages)
|
||||
mm_inputs = self._get_mm_inputs(images, videos, processor)
|
||||
if "pixel_values" in mm_inputs:
|
||||
image_sizes = iter(mm_inputs["image_sizes"])
|
||||
height, width = get_image_size(to_numpy_array(mm_inputs["pixel_values"][0][0]))
|
||||
for message in messages:
|
||||
content = message["content"]
|
||||
|
||||
while self.image_token in content:
|
||||
image_size = next(image_sizes)
|
||||
orig_height, orig_width = image_size
|
||||
image_seqlen = processor._get_number_of_features(orig_height, orig_width, height, width)
|
||||
if processor.vision_feature_select_strategy == "default":
|
||||
image_seqlen -= 1
|
||||
num_image_tokens += 1
|
||||
content = content.replace(self.image_token, "{{image}}" * image_seqlen, 1)
|
||||
|
||||
message["content"] = content.replace("{{image}}", self.image_token)
|
||||
|
||||
if "pixel_values_videos" in mm_inputs:
|
||||
pixel_values_video = to_numpy_array(mm_inputs.get("pixel_values_videos")[0])
|
||||
height, width = get_image_size(pixel_values_video[0])
|
||||
num_frames = pixel_values_video.shape[0] # frame dim is always after batch dim
|
||||
image_seqlen = (height // processor.patch_size) * (width // processor.patch_size)
|
||||
video_seqlen = image_seqlen // 4 * num_frames # divide by 4 needed for avg pooling layer
|
||||
|
||||
for message in messages:
|
||||
content = message["content"]
|
||||
while self.video_token in content:
|
||||
num_video_tokens += 1
|
||||
content = content.replace(self.video_token, "{{video}}", 1)
|
||||
message["content"] = content.replace("{{video}}", self.video_token * video_seqlen)
|
||||
|
||||
if len(images) != num_image_tokens:
|
||||
raise ValueError("The number of images does not match the number of {} tokens".format(IMAGE_PLACEHOLDER))
|
||||
|
||||
if len(videos) != num_video_tokens:
|
||||
raise ValueError("The number of videos does not match the number of {} tokens".format(IMAGE_PLACEHOLDER))
|
||||
|
||||
return messages
|
||||
|
||||
@override
|
||||
def get_mm_inputs(
|
||||
self,
|
||||
images: Sequence["ImageInput"],
|
||||
videos: Sequence["VideoInput"],
|
||||
imglens: Sequence[int],
|
||||
vidlens: Sequence[int],
|
||||
seqlens: Sequence[int],
|
||||
processor: Optional["ProcessorMixin"],
|
||||
) -> Dict[str, Union[List[int], "torch.Tensor"]]:
|
||||
self._validate_input(images, videos)
|
||||
return self._get_mm_inputs(images, videos, processor)
|
||||
|
||||
|
||||
class PaliGemmaPlugin(BasePlugin):
|
||||
@override
|
||||
def process_messages(
|
||||
@ -417,11 +541,77 @@ class Qwen2vlPlugin(BasePlugin):
|
||||
return self._get_mm_inputs(images, videos, processor)
|
||||
|
||||
|
||||
class VideoLlavaPlugin(BasePlugin):
|
||||
@override
|
||||
def process_messages(
|
||||
self,
|
||||
messages: Sequence[Dict[str, str]],
|
||||
images: Sequence["ImageInput"],
|
||||
videos: Sequence["VideoInput"],
|
||||
processor: Optional["ProcessorMixin"],
|
||||
) -> List[Dict[str, str]]:
|
||||
self._validate_input(images, videos)
|
||||
num_image_tokens = 0
|
||||
num_video_tokens = 0
|
||||
messages = deepcopy(messages)
|
||||
mm_inputs = self._get_mm_inputs(images, videos, processor)
|
||||
num_frames = 0
|
||||
exist_images = "pixel_values_images" in mm_inputs
|
||||
exist_videos = "pixel_values_videos" in mm_inputs
|
||||
if exist_videos or exist_images:
|
||||
if exist_images:
|
||||
height, width = get_image_size(to_numpy_array(mm_inputs.get("pixel_values_images")[0]))
|
||||
num_frames = 1
|
||||
if exist_videos:
|
||||
pixel_values_video = to_numpy_array(mm_inputs.get("pixel_values_videos")[0])
|
||||
height, width = get_image_size(pixel_values_video[0])
|
||||
num_frames = pixel_values_video.shape[0] # frame dim is always after batch dim
|
||||
image_seqlen = (height // processor.patch_size) * (width // processor.patch_size) + 1
|
||||
video_seqlen = image_seqlen * num_frames
|
||||
if processor.vision_feature_select_strategy == "default":
|
||||
image_seqlen -= 1
|
||||
for message in messages:
|
||||
content = message["content"]
|
||||
while self.image_token in content:
|
||||
num_image_tokens += 1
|
||||
content = content.replace(self.image_token, "{{image}}", 1)
|
||||
while self.video_token in content:
|
||||
num_video_tokens += 1
|
||||
content = content.replace(self.video_token, "{{video}}", 1)
|
||||
|
||||
content = content.replace("{{image}}", self.image_token * image_seqlen)
|
||||
message["content"] = content.replace("{{video}}", self.video_token * video_seqlen)
|
||||
|
||||
if len(images) != num_image_tokens:
|
||||
raise ValueError("The number of images does not match the number of {} tokens".format(self.image_token))
|
||||
|
||||
if len(videos) != num_video_tokens:
|
||||
raise ValueError("The number of videos does not match the number of {} tokens".format(self.video_token))
|
||||
|
||||
return messages
|
||||
|
||||
@override
|
||||
def get_mm_inputs(
|
||||
self,
|
||||
images: Sequence["ImageInput"],
|
||||
videos: Sequence["VideoInput"],
|
||||
imglens: Sequence[int],
|
||||
vidlens: Sequence[int],
|
||||
seqlens: Sequence[int],
|
||||
processor: Optional["ProcessorMixin"],
|
||||
) -> Dict[str, Union[List[int], "torch.Tensor"]]:
|
||||
self._validate_input(images, videos)
|
||||
return self._get_mm_inputs(images, videos, processor)
|
||||
|
||||
|
||||
PLUGINS = {
|
||||
"base": BasePlugin,
|
||||
"llava": LlavaPlugin,
|
||||
"llava_next": LlavaNextPlugin,
|
||||
"llava_next_video": LlavaNextVideoPlugin,
|
||||
"paligemma": PaliGemmaPlugin,
|
||||
"qwen2_vl": Qwen2vlPlugin,
|
||||
"video_llava": VideoLlavaPlugin,
|
||||
}
|
||||
|
||||
|
||||
|
@ -760,6 +760,107 @@ _register_template(
|
||||
)
|
||||
|
||||
|
||||
_register_template(
|
||||
name="llava_next",
|
||||
format_user=StringFormatter(slots=["USER: {{content}} ASSISTANT:"]),
|
||||
default_system=(
|
||||
"A chat between a curious user and an artificial intelligence assistant. "
|
||||
"The assistant gives helpful, detailed, and polite answers to the user's questions."
|
||||
),
|
||||
mm_plugin=get_mm_plugin(name="llava_next", image_token="<image>"),
|
||||
)
|
||||
|
||||
|
||||
_register_template(
|
||||
name="llava_next_llama3",
|
||||
format_user=StringFormatter(
|
||||
slots=[
|
||||
(
|
||||
"<|start_header_id|>user<|end_header_id|>\n\n{{content}}<|eot_id|>"
|
||||
"<|start_header_id|>assistant<|end_header_id|>\n\n"
|
||||
)
|
||||
]
|
||||
),
|
||||
format_system=StringFormatter(slots=["<|start_header_id|>system<|end_header_id|>\n\n{{content}}<|eot_id|>"]),
|
||||
format_observation=StringFormatter(
|
||||
slots=[
|
||||
(
|
||||
"<|start_header_id|>tool<|end_header_id|>\n\n{{content}}<|eot_id|>"
|
||||
"<|start_header_id|>assistant<|end_header_id|>\n\n"
|
||||
)
|
||||
]
|
||||
),
|
||||
format_prefix=EmptyFormatter(slots=[{"bos_token"}]),
|
||||
stop_words=["<|eot_id|>"],
|
||||
replace_eos=True,
|
||||
replace_jinja_template=False,
|
||||
mm_plugin=get_mm_plugin(name="llava_next", image_token="<image>"),
|
||||
)
|
||||
|
||||
|
||||
_register_template(
|
||||
name="llava_next_mistral",
|
||||
format_user=StringFormatter(slots=["[INST] {{content}} [/INST]"]),
|
||||
format_prefix=EmptyFormatter(slots=[{"bos_token"}]),
|
||||
mm_plugin=get_mm_plugin(name="llava_next", image_token="<image>"),
|
||||
)
|
||||
|
||||
|
||||
_register_template(
|
||||
name="llava_next_qwen",
|
||||
format_user=StringFormatter(slots=["<|im_start|>user\n{{content}}<|im_end|>\n<|im_start|>assistant\n"]),
|
||||
format_system=StringFormatter(slots=["<|im_start|>system\n{{content}}<|im_end|>\n"]),
|
||||
format_observation=StringFormatter(slots=["<|im_start|>tool\n{{content}}<|im_end|>\n<|im_start|>assistant\n"]),
|
||||
format_separator=EmptyFormatter(slots=["\n"]),
|
||||
default_system="You are a helpful assistant.",
|
||||
stop_words=["<|im_end|>"],
|
||||
replace_eos=True,
|
||||
replace_jinja_template=False,
|
||||
mm_plugin=get_mm_plugin(name="llava_next", image_token="<image>"),
|
||||
)
|
||||
|
||||
|
||||
_register_template(
|
||||
name="llava_next_yi",
|
||||
format_user=StringFormatter(slots=["<|im_start|>user\n{{content}}<|im_end|>\n<|im_start|>assistant\n"]),
|
||||
format_system=StringFormatter(slots=["<|im_start|>system\n{{content}}<|im_end|>\n"]),
|
||||
format_separator=EmptyFormatter(slots=["\n"]),
|
||||
stop_words=["<|im_end|>"],
|
||||
replace_eos=True,
|
||||
mm_plugin=get_mm_plugin(name="llava_next", image_token="<image>"),
|
||||
)
|
||||
|
||||
|
||||
_register_template(
|
||||
name="llava_next_video",
|
||||
format_user=StringFormatter(slots=["USER: {{content}} ASSISTANT:"]),
|
||||
default_system=(
|
||||
"A chat between a curious user and an artificial intelligence assistant. "
|
||||
"The assistant gives helpful, detailed, and polite answers to the user's questions."
|
||||
),
|
||||
mm_plugin=get_mm_plugin(name="llava_next_video", image_token="<image>", video_token="<video>"),
|
||||
)
|
||||
|
||||
|
||||
_register_template(
|
||||
name="llava_next_video_mistral",
|
||||
format_user=StringFormatter(slots=["[INST] {{content}} [/INST]"]),
|
||||
format_prefix=EmptyFormatter(slots=[{"bos_token"}]),
|
||||
mm_plugin=get_mm_plugin(name="llava_next_video", image_token="<image>", video_token="<video>"),
|
||||
)
|
||||
|
||||
|
||||
_register_template(
|
||||
name="llava_next_video_yi",
|
||||
format_user=StringFormatter(slots=["<|im_start|>user\n{{content}}<|im_end|>\n<|im_start|>assistant\n"]),
|
||||
format_system=StringFormatter(slots=["<|im_start|>system\n{{content}}<|im_end|>\n"]),
|
||||
format_separator=EmptyFormatter(slots=["\n"]),
|
||||
stop_words=["<|im_end|>"],
|
||||
replace_eos=True,
|
||||
mm_plugin=get_mm_plugin(name="llava_next_video", image_token="<image>", video_token="<video>"),
|
||||
)
|
||||
|
||||
|
||||
_register_template(
|
||||
name="mistral",
|
||||
format_user=StringFormatter(slots=["[INST] {{content}} [/INST]"]),
|
||||
@ -906,6 +1007,17 @@ _register_template(
|
||||
)
|
||||
|
||||
|
||||
_register_template(
|
||||
name="video_llava",
|
||||
format_user=StringFormatter(slots=["USER: {{content}} ASSISTANT:"]),
|
||||
default_system=(
|
||||
"A chat between a curious user and an artificial intelligence assistant. "
|
||||
"The assistant gives helpful, detailed, and polite answers to the user's questions."
|
||||
),
|
||||
mm_plugin=get_mm_plugin(name="video_llava", image_token="<image>", video_token="<video>"),
|
||||
)
|
||||
|
||||
|
||||
_register_template(
|
||||
name="xuanyuan",
|
||||
format_user=StringFormatter(slots=["Human: {{content}} Assistant:"]),
|
||||
|
@ -114,17 +114,12 @@ def register_model_group(
|
||||
template: Optional[str] = None,
|
||||
vision: bool = False,
|
||||
) -> None:
|
||||
prefix = None
|
||||
for name, path in models.items():
|
||||
if prefix is None:
|
||||
prefix = name.split("-")[0]
|
||||
else:
|
||||
assert prefix == name.split("-")[0], "prefix should be identical."
|
||||
SUPPORTED_MODELS[name] = path
|
||||
if template is not None:
|
||||
DEFAULT_TEMPLATE[prefix] = template
|
||||
if template is not None and any(suffix in name for suffix in ("-Chat", "-Instruct")):
|
||||
DEFAULT_TEMPLATE[name] = template
|
||||
if vision:
|
||||
VISION_MODELS.add(prefix)
|
||||
VISION_MODELS.add(name)
|
||||
|
||||
|
||||
register_model_group(
|
||||
@ -274,27 +269,27 @@ register_model_group(
|
||||
|
||||
register_model_group(
|
||||
models={
|
||||
"ChineseLLaMA2-1.3B": {
|
||||
"Chinese-Llama-2-1.3B": {
|
||||
DownloadSource.DEFAULT: "hfl/chinese-llama-2-1.3b",
|
||||
DownloadSource.MODELSCOPE: "AI-ModelScope/chinese-llama-2-1.3b",
|
||||
},
|
||||
"ChineseLLaMA2-7B": {
|
||||
"Chinese-Llama-2-7B": {
|
||||
DownloadSource.DEFAULT: "hfl/chinese-llama-2-7b",
|
||||
DownloadSource.MODELSCOPE: "AI-ModelScope/chinese-llama-2-7b",
|
||||
},
|
||||
"ChineseLLaMA2-13B": {
|
||||
"Chinese-Llama-2-13B": {
|
||||
DownloadSource.DEFAULT: "hfl/chinese-llama-2-13b",
|
||||
DownloadSource.MODELSCOPE: "AI-ModelScope/chinese-llama-2-13b",
|
||||
},
|
||||
"ChineseLLaMA2-1.3B-Chat": {
|
||||
"Chinese-Alpaca-2-1.3B-Chat": {
|
||||
DownloadSource.DEFAULT: "hfl/chinese-alpaca-2-1.3b",
|
||||
DownloadSource.MODELSCOPE: "AI-ModelScope/chinese-alpaca-2-1.3b",
|
||||
},
|
||||
"ChineseLLaMA2-7B-Chat": {
|
||||
"Chinese-Alpaca-2-7B-Chat": {
|
||||
DownloadSource.DEFAULT: "hfl/chinese-alpaca-2-7b",
|
||||
DownloadSource.MODELSCOPE: "AI-ModelScope/chinese-alpaca-2-7b",
|
||||
},
|
||||
"ChineseLLaMA2-13B-Chat": {
|
||||
"Chinese-Alpaca-2-13B-Chat": {
|
||||
DownloadSource.DEFAULT: "hfl/chinese-alpaca-2-13b",
|
||||
DownloadSource.MODELSCOPE: "AI-ModelScope/chinese-alpaca-2-13b",
|
||||
},
|
||||
@ -450,25 +445,25 @@ register_model_group(
|
||||
|
||||
register_model_group(
|
||||
models={
|
||||
"DeepSeekCoder-6.7B-Base": {
|
||||
"DeepSeek-Coder-6.7B-Base": {
|
||||
DownloadSource.DEFAULT: "deepseek-ai/deepseek-coder-6.7b-base",
|
||||
DownloadSource.MODELSCOPE: "deepseek-ai/deepseek-coder-6.7b-base",
|
||||
},
|
||||
"DeepSeekCoder-7B-Base": {
|
||||
"DeepSeek-Coder-7B-Base": {
|
||||
DownloadSource.DEFAULT: "deepseek-ai/deepseek-coder-7b-base-v1.5",
|
||||
},
|
||||
"DeepSeekCoder-33B-Base": {
|
||||
"DeepSeek-Coder-33B-Base": {
|
||||
DownloadSource.DEFAULT: "deepseek-ai/deepseek-coder-33b-base",
|
||||
DownloadSource.MODELSCOPE: "deepseek-ai/deepseek-coder-33b-base",
|
||||
},
|
||||
"DeepSeekCoder-6.7B-Instruct": {
|
||||
"DeepSeek-Coder-6.7B-Instruct": {
|
||||
DownloadSource.DEFAULT: "deepseek-ai/deepseek-coder-6.7b-instruct",
|
||||
DownloadSource.MODELSCOPE: "deepseek-ai/deepseek-coder-6.7b-instruct",
|
||||
},
|
||||
"DeepSeekCoder-7B-Instruct": {
|
||||
"DeepSeek-Coder-7B-Instruct": {
|
||||
DownloadSource.DEFAULT: "deepseek-ai/deepseek-coder-7b-instruct-v1.5",
|
||||
},
|
||||
"DeepSeekCoder-33B-Instruct": {
|
||||
"DeepSeek-Coder-33B-Instruct": {
|
||||
DownloadSource.DEFAULT: "deepseek-ai/deepseek-coder-33b-instruct",
|
||||
DownloadSource.MODELSCOPE: "deepseek-ai/deepseek-coder-33b-instruct",
|
||||
},
|
||||
@ -624,13 +619,6 @@ register_model_group(
|
||||
DownloadSource.DEFAULT: "internlm/internlm2-chat-20b",
|
||||
DownloadSource.MODELSCOPE: "Shanghai_AI_Laboratory/internlm2-chat-20b",
|
||||
},
|
||||
},
|
||||
template="intern2",
|
||||
)
|
||||
|
||||
|
||||
register_model_group(
|
||||
models={
|
||||
"InternLM2.5-1.8B": {
|
||||
DownloadSource.DEFAULT: "internlm/internlm2_5-1_8b",
|
||||
DownloadSource.MODELSCOPE: "Shanghai_AI_Laboratory/internlm2_5-1_8b",
|
||||
@ -686,19 +674,19 @@ register_model_group(
|
||||
|
||||
register_model_group(
|
||||
models={
|
||||
"LLaMA-7B": {
|
||||
"Llama-7B": {
|
||||
DownloadSource.DEFAULT: "huggyllama/llama-7b",
|
||||
DownloadSource.MODELSCOPE: "skyline2006/llama-7b",
|
||||
},
|
||||
"LLaMA-13B": {
|
||||
"Llama-13B": {
|
||||
DownloadSource.DEFAULT: "huggyllama/llama-13b",
|
||||
DownloadSource.MODELSCOPE: "skyline2006/llama-13b",
|
||||
},
|
||||
"LLaMA-30B": {
|
||||
"Llama-30B": {
|
||||
DownloadSource.DEFAULT: "huggyllama/llama-30b",
|
||||
DownloadSource.MODELSCOPE: "skyline2006/llama-30b",
|
||||
},
|
||||
"LLaMA-65B": {
|
||||
"Llama-65B": {
|
||||
DownloadSource.DEFAULT: "huggyllama/llama-65b",
|
||||
DownloadSource.MODELSCOPE: "skyline2006/llama-65b",
|
||||
},
|
||||
@ -708,27 +696,27 @@ register_model_group(
|
||||
|
||||
register_model_group(
|
||||
models={
|
||||
"LLaMA2-7B": {
|
||||
"Llama-2-7B": {
|
||||
DownloadSource.DEFAULT: "meta-llama/Llama-2-7b-hf",
|
||||
DownloadSource.MODELSCOPE: "modelscope/Llama-2-7b-ms",
|
||||
},
|
||||
"LLaMA2-13B": {
|
||||
"Llama-2-13B": {
|
||||
DownloadSource.DEFAULT: "meta-llama/Llama-2-13b-hf",
|
||||
DownloadSource.MODELSCOPE: "modelscope/Llama-2-13b-ms",
|
||||
},
|
||||
"LLaMA2-70B": {
|
||||
"Llama-2-70B": {
|
||||
DownloadSource.DEFAULT: "meta-llama/Llama-2-70b-hf",
|
||||
DownloadSource.MODELSCOPE: "modelscope/Llama-2-70b-ms",
|
||||
},
|
||||
"LLaMA2-7B-Chat": {
|
||||
"Llama-2-7B-Chat": {
|
||||
DownloadSource.DEFAULT: "meta-llama/Llama-2-7b-chat-hf",
|
||||
DownloadSource.MODELSCOPE: "modelscope/Llama-2-7b-chat-ms",
|
||||
},
|
||||
"LLaMA2-13B-Chat": {
|
||||
"Llama-2-13B-Chat": {
|
||||
DownloadSource.DEFAULT: "meta-llama/Llama-2-13b-chat-hf",
|
||||
DownloadSource.MODELSCOPE: "modelscope/Llama-2-13b-chat-ms",
|
||||
},
|
||||
"LLaMA2-70B-Chat": {
|
||||
"Llama-2-70B-Chat": {
|
||||
DownloadSource.DEFAULT: "meta-llama/Llama-2-70b-chat-hf",
|
||||
DownloadSource.MODELSCOPE: "modelscope/Llama-2-70b-chat-ms",
|
||||
},
|
||||
@ -739,80 +727,74 @@ register_model_group(
|
||||
|
||||
register_model_group(
|
||||
models={
|
||||
"LLaMA3-8B": {
|
||||
"Llama-3-8B": {
|
||||
DownloadSource.DEFAULT: "meta-llama/Meta-Llama-3-8B",
|
||||
DownloadSource.MODELSCOPE: "LLM-Research/Meta-Llama-3-8B",
|
||||
},
|
||||
"LLaMA3-70B": {
|
||||
"Llama-3-70B": {
|
||||
DownloadSource.DEFAULT: "meta-llama/Meta-Llama-3-70B",
|
||||
DownloadSource.MODELSCOPE: "LLM-Research/Meta-Llama-3-70B",
|
||||
},
|
||||
"LLaMA3-8B-Instruct": {
|
||||
"Llama-3-8B-Instruct": {
|
||||
DownloadSource.DEFAULT: "meta-llama/Meta-Llama-3-8B-Instruct",
|
||||
DownloadSource.MODELSCOPE: "LLM-Research/Meta-Llama-3-8B-Instruct",
|
||||
},
|
||||
"LLaMA3-70B-Instruct": {
|
||||
"Llama-3-70B-Instruct": {
|
||||
DownloadSource.DEFAULT: "meta-llama/Meta-Llama-3-70B-Instruct",
|
||||
DownloadSource.MODELSCOPE: "LLM-Research/Meta-Llama-3-70B-Instruct",
|
||||
},
|
||||
"LLaMA3-8B-Chinese-Chat": {
|
||||
"Llama-3-8B-Chinese-Chat": {
|
||||
DownloadSource.DEFAULT: "shenzhi-wang/Llama3-8B-Chinese-Chat",
|
||||
DownloadSource.MODELSCOPE: "LLM-Research/Llama3-8B-Chinese-Chat",
|
||||
},
|
||||
"LLaMA3-70B-Chinese-Chat": {
|
||||
"Llama-3-70B-Chinese-Chat": {
|
||||
DownloadSource.DEFAULT: "shenzhi-wang/Llama3-70B-Chinese-Chat",
|
||||
},
|
||||
},
|
||||
template="llama3",
|
||||
)
|
||||
|
||||
|
||||
register_model_group(
|
||||
models={
|
||||
"LLaMA3.1-8B": {
|
||||
"Llama-3.1-8B": {
|
||||
DownloadSource.DEFAULT: "meta-llama/Meta-Llama-3.1-8B",
|
||||
DownloadSource.MODELSCOPE: "LLM-Research/Meta-Llama-3.1-8B",
|
||||
},
|
||||
"LLaMA3.1-70B": {
|
||||
"Llama-3.1-70B": {
|
||||
DownloadSource.DEFAULT: "meta-llama/Meta-Llama-3.1-70B",
|
||||
DownloadSource.MODELSCOPE: "LLM-Research/Meta-Llama-3.1-70B",
|
||||
},
|
||||
"LLaMA3.1-405B": {
|
||||
"Llama-3.1-405B": {
|
||||
DownloadSource.DEFAULT: "meta-llama/Meta-Llama-3.1-405B",
|
||||
DownloadSource.MODELSCOPE: "LLM-Research/Meta-Llama-3.1-405B",
|
||||
},
|
||||
"LLaMA3.1-8B-Instruct": {
|
||||
"Llama-3.1-8B-Instruct": {
|
||||
DownloadSource.DEFAULT: "meta-llama/Meta-Llama-3.1-8B-Instruct",
|
||||
DownloadSource.MODELSCOPE: "LLM-Research/Meta-Llama-3.1-8B-Instruct",
|
||||
},
|
||||
"LLaMA3.1-70B-Instruct": {
|
||||
"Llama-3.1-70B-Instruct": {
|
||||
DownloadSource.DEFAULT: "meta-llama/Meta-Llama-3.1-70B-Instruct",
|
||||
DownloadSource.MODELSCOPE: "LLM-Research/Meta-Llama-3.1-70B-Instruct",
|
||||
},
|
||||
"LLaMA3.1-405B-Instruct": {
|
||||
"Llama-3.1-405B-Instruct": {
|
||||
DownloadSource.DEFAULT: "meta-llama/Meta-Llama-3.1-405B-Instruct",
|
||||
DownloadSource.MODELSCOPE: "LLM-Research/Meta-Llama-3.1-405B-Instruct",
|
||||
},
|
||||
"Llama-3.1-8B-Chinese-Chat": {
|
||||
DownloadSource.DEFAULT: "shenzhi-wang/Llama3.1-8B-Chinese-Chat",
|
||||
DownloadSource.MODELSCOPE: "XD_AI/Llama3.1-8B-Chinese-Chat",
|
||||
},
|
||||
template="llama3",
|
||||
)
|
||||
|
||||
|
||||
register_model_group(
|
||||
models={
|
||||
"LLaMA3.2-1B": {
|
||||
"Llama-3.1-70B-Chinese-Chat": {
|
||||
DownloadSource.DEFAULT: "shenzhi-wang/Llama3.1-70B-Chinese-Chat",
|
||||
DownloadSource.MODELSCOPE: "XD_AI/Llama3.1-70B-Chinese-Chat",
|
||||
},
|
||||
"Llama-3.2-1B": {
|
||||
DownloadSource.DEFAULT: "meta-llama/Llama-3.2-1B",
|
||||
DownloadSource.MODELSCOPE: "LLM-Research/Llama-3.2-1B",
|
||||
},
|
||||
"LLaMA3.2-3B": {
|
||||
"Llama-3.2-3B": {
|
||||
DownloadSource.DEFAULT: "meta-llama/Llama-3.2-3B",
|
||||
DownloadSource.MODELSCOPE: "LLM-Research/Llama-3.2-3B",
|
||||
},
|
||||
"LLaMA3.2-1B-Instruct": {
|
||||
"Llama-3.2-1B-Instruct": {
|
||||
DownloadSource.DEFAULT: "meta-llama/Llama-3.2-1B-Instruct",
|
||||
DownloadSource.MODELSCOPE: "LLM-Research/Llama-3.2-1B-Instruct",
|
||||
},
|
||||
"LLaMA3.2-3B-Instruct": {
|
||||
"Llama-3.2-3B-Instruct": {
|
||||
DownloadSource.DEFAULT: "meta-llama/Llama-3.2-3B-Instruct",
|
||||
DownloadSource.MODELSCOPE: "LLM-Research/Llama-3.2-3B-Instruct",
|
||||
},
|
||||
@ -823,11 +805,13 @@ register_model_group(
|
||||
|
||||
register_model_group(
|
||||
models={
|
||||
"LLaVA1.5-7B-Chat": {
|
||||
"LLaVA-1.5-7B-Chat": {
|
||||
DownloadSource.DEFAULT: "llava-hf/llava-1.5-7b-hf",
|
||||
DownloadSource.MODELSCOPE: "swift/llava-1.5-7b-hf",
|
||||
},
|
||||
"LLaVA1.5-13B-Chat": {
|
||||
"LLaVA-1.5-13B-Chat": {
|
||||
DownloadSource.DEFAULT: "llava-hf/llava-1.5-13b-hf",
|
||||
DownloadSource.MODELSCOPE: "swift/llava-1.5-13b-hf",
|
||||
},
|
||||
},
|
||||
template="llava",
|
||||
@ -835,6 +819,117 @@ register_model_group(
|
||||
)
|
||||
|
||||
|
||||
register_model_group(
|
||||
models={
|
||||
"LLaVA-NeXT-7B-Chat": {
|
||||
DownloadSource.DEFAULT: "llava-hf/llava-v1.6-vicuna-7b-hf",
|
||||
DownloadSource.MODELSCOPE: "swift/llava-v1.6-vicuna-7b-hf",
|
||||
},
|
||||
"LLaVA-NeXT-13B-Chat": {
|
||||
DownloadSource.DEFAULT: "llava-hf/llava-v1.6-vicuna-13b-hf",
|
||||
DownloadSource.MODELSCOPE: "swift/llava-v1.6-vicuna-13b-hf",
|
||||
},
|
||||
},
|
||||
template="llava_next",
|
||||
vision=True,
|
||||
)
|
||||
|
||||
|
||||
register_model_group(
|
||||
models={
|
||||
"LLaVA-NeXT-Mistral-7B-Chat": {
|
||||
DownloadSource.DEFAULT: "llava-hf/llava-v1.6-mistral-7b-hf",
|
||||
DownloadSource.MODELSCOPE: "swift/llava-v1.6-mistral-7b-hf",
|
||||
},
|
||||
},
|
||||
template="llava_next_mistral",
|
||||
vision=True,
|
||||
)
|
||||
|
||||
|
||||
register_model_group(
|
||||
models={
|
||||
"LLaVA-NeXT-Llama3-8B-Chat": {
|
||||
DownloadSource.DEFAULT: "llava-hf/llama3-llava-next-8b-hf",
|
||||
DownloadSource.MODELSCOPE: "swift/llama3-llava-next-8b-hf",
|
||||
},
|
||||
},
|
||||
template="llava_next_llama3",
|
||||
vision=True,
|
||||
)
|
||||
|
||||
|
||||
register_model_group(
|
||||
models={
|
||||
"LLaVA-NeXT-34B-Chat": {
|
||||
DownloadSource.DEFAULT: "llava-hf/llava-v1.6-34b-hf",
|
||||
DownloadSource.MODELSCOPE: "LLM-Research/llava-v1.6-34b-hf",
|
||||
},
|
||||
},
|
||||
template="llava_next_yi",
|
||||
vision=True,
|
||||
)
|
||||
|
||||
|
||||
register_model_group(
|
||||
models={
|
||||
"LLaVA-NeXT-72B-Chat": {
|
||||
DownloadSource.DEFAULT: "llava-hf/llava-next-72b-hf",
|
||||
DownloadSource.MODELSCOPE: "AI-ModelScope/llava-next-72b-hf",
|
||||
},
|
||||
"LLaVA-NeXT-110B-Chat": {
|
||||
DownloadSource.DEFAULT: "llava-hf/llava-next-110b-hf",
|
||||
DownloadSource.MODELSCOPE: "AI-ModelScope/llava-next-110b-hf",
|
||||
},
|
||||
},
|
||||
template="llava_next_qwen",
|
||||
vision=True,
|
||||
)
|
||||
|
||||
|
||||
register_model_group(
|
||||
models={
|
||||
"LLaVA-NeXT-Video-7B-Chat": {
|
||||
DownloadSource.DEFAULT: "llava-hf/LLaVA-NeXT-Video-7B-hf",
|
||||
DownloadSource.MODELSCOPE: "swift/LLaVA-NeXT-Video-7B-hf",
|
||||
},
|
||||
"LLaVA-NeXT-Video-7B-DPO-Chat": {
|
||||
DownloadSource.DEFAULT: "llava-hf/LLaVA-NeXT-Video-7B-DPO-hf",
|
||||
DownloadSource.MODELSCOPE: "swift/LLaVA-NeXT-Video-7B-DPO-hf",
|
||||
},
|
||||
},
|
||||
template="llava_next_video",
|
||||
vision=True,
|
||||
)
|
||||
|
||||
|
||||
register_model_group(
|
||||
models={
|
||||
"LLaVA-NeXT-Video-7B-32k-Chat": {
|
||||
DownloadSource.DEFAULT: "llava-hf/LLaVA-NeXT-Video-7B-32K-hf",
|
||||
DownloadSource.MODELSCOPE: "swift/LLaVA-NeXT-Video-7B-32K-hf",
|
||||
},
|
||||
},
|
||||
template="llava_next_video_mistral",
|
||||
vision=True,
|
||||
)
|
||||
|
||||
|
||||
register_model_group(
|
||||
models={
|
||||
"LLaVA-NeXT-Video-34B-Chat": {
|
||||
DownloadSource.DEFAULT: "llava-hf/LLaVA-NeXT-Video-34B-hf",
|
||||
DownloadSource.MODELSCOPE: "swift/LLaVA-NeXT-Video-34B-hf",
|
||||
},
|
||||
"LLaVA-NeXT-Video-34B-DPO-Chat": {
|
||||
DownloadSource.DEFAULT: "llava-hf/LLaVA-NeXT-Video-34B-DPO-hf",
|
||||
},
|
||||
},
|
||||
template="llava_next_video_yi",
|
||||
vision=True,
|
||||
)
|
||||
|
||||
|
||||
register_model_group(
|
||||
models={
|
||||
"MiniCPM-2B-SFT-Chat": {
|
||||
@ -1028,27 +1123,27 @@ register_model_group(
|
||||
|
||||
register_model_group(
|
||||
models={
|
||||
"Phi3-4B-4k-Instruct": {
|
||||
"Phi-3-4B-4k-Instruct": {
|
||||
DownloadSource.DEFAULT: "microsoft/Phi-3-mini-4k-instruct",
|
||||
DownloadSource.MODELSCOPE: "LLM-Research/Phi-3-mini-4k-instruct",
|
||||
},
|
||||
"Phi3-4B-128k-Instruct": {
|
||||
"Phi-3-4B-128k-Instruct": {
|
||||
DownloadSource.DEFAULT: "microsoft/Phi-3-mini-128k-instruct",
|
||||
DownloadSource.MODELSCOPE: "LLM-Research/Phi-3-mini-128k-instruct",
|
||||
},
|
||||
"Phi3-7B-8k-Instruct": {
|
||||
"Phi-3-7B-8k-Instruct": {
|
||||
DownloadSource.DEFAULT: "microsoft/Phi-3-small-8k-instruct",
|
||||
DownloadSource.MODELSCOPE: "LLM-Research/Phi-3-small-8k-instruct",
|
||||
},
|
||||
"Phi3-7B-128k-Instruct": {
|
||||
"Phi-3-7B-128k-Instruct": {
|
||||
DownloadSource.DEFAULT: "microsoft/Phi-3-small-128k-instruct",
|
||||
DownloadSource.MODELSCOPE: "LLM-Research/Phi-3-small-128k-instruct",
|
||||
},
|
||||
"Phi3-14B-8k-Instruct": {
|
||||
"Phi-3-14B-8k-Instruct": {
|
||||
DownloadSource.DEFAULT: "microsoft/Phi-3-medium-4k-instruct",
|
||||
DownloadSource.MODELSCOPE: "LLM-Research/Phi-3-medium-4k-instruct",
|
||||
},
|
||||
"Phi3-14B-128k-Instruct": {
|
||||
"Phi-3-14B-128k-Instruct": {
|
||||
DownloadSource.DEFAULT: "microsoft/Phi-3-medium-128k-instruct",
|
||||
DownloadSource.MODELSCOPE: "LLM-Research/Phi-3-medium-128k-instruct",
|
||||
},
|
||||
@ -1091,35 +1186,35 @@ register_model_group(
|
||||
DownloadSource.DEFAULT: "Qwen/Qwen-72B-Chat",
|
||||
DownloadSource.MODELSCOPE: "qwen/Qwen-72B-Chat",
|
||||
},
|
||||
"Qwen-1.8B-int8-Chat": {
|
||||
"Qwen-1.8B-Chat-Int8": {
|
||||
DownloadSource.DEFAULT: "Qwen/Qwen-1_8B-Chat-Int8",
|
||||
DownloadSource.MODELSCOPE: "qwen/Qwen-1_8B-Chat-Int8",
|
||||
},
|
||||
"Qwen-1.8B-int4-Chat": {
|
||||
"Qwen-1.8B-Chat-Int4": {
|
||||
DownloadSource.DEFAULT: "Qwen/Qwen-1_8B-Chat-Int4",
|
||||
DownloadSource.MODELSCOPE: "qwen/Qwen-1_8B-Chat-Int4",
|
||||
},
|
||||
"Qwen-7B-int8-Chat": {
|
||||
"Qwen-7B-Chat-Int8": {
|
||||
DownloadSource.DEFAULT: "Qwen/Qwen-7B-Chat-Int8",
|
||||
DownloadSource.MODELSCOPE: "qwen/Qwen-7B-Chat-Int8",
|
||||
},
|
||||
"Qwen-7B-int4-Chat": {
|
||||
"Qwen-7B-Chat-Int4": {
|
||||
DownloadSource.DEFAULT: "Qwen/Qwen-7B-Chat-Int4",
|
||||
DownloadSource.MODELSCOPE: "qwen/Qwen-7B-Chat-Int4",
|
||||
},
|
||||
"Qwen-14B-int8-Chat": {
|
||||
"Qwen-14B-Chat-Int8": {
|
||||
DownloadSource.DEFAULT: "Qwen/Qwen-14B-Chat-Int8",
|
||||
DownloadSource.MODELSCOPE: "qwen/Qwen-14B-Chat-Int8",
|
||||
},
|
||||
"Qwen-14B-int4-Chat": {
|
||||
"Qwen-14B-Chat-Int4": {
|
||||
DownloadSource.DEFAULT: "Qwen/Qwen-14B-Chat-Int4",
|
||||
DownloadSource.MODELSCOPE: "qwen/Qwen-14B-Chat-Int4",
|
||||
},
|
||||
"Qwen-72B-int8-Chat": {
|
||||
"Qwen-72B-Chat-Int8": {
|
||||
DownloadSource.DEFAULT: "Qwen/Qwen-72B-Chat-Int8",
|
||||
DownloadSource.MODELSCOPE: "qwen/Qwen-72B-Chat-Int8",
|
||||
},
|
||||
"Qwen-72B-int4-Chat": {
|
||||
"Qwen-72B-Chat-Int4": {
|
||||
DownloadSource.DEFAULT: "Qwen/Qwen-72B-Chat-Int4",
|
||||
DownloadSource.MODELSCOPE: "qwen/Qwen-72B-Chat-Int4",
|
||||
},
|
||||
@ -1202,75 +1297,75 @@ register_model_group(
|
||||
DownloadSource.DEFAULT: "Qwen/Qwen1.5-MoE-A2.7B-Chat",
|
||||
DownloadSource.MODELSCOPE: "qwen/Qwen1.5-MoE-A2.7B-Chat",
|
||||
},
|
||||
"Qwen1.5-0.5B-int8-Chat": {
|
||||
"Qwen1.5-0.5B-Chat-GPTQ-Int8": {
|
||||
DownloadSource.DEFAULT: "Qwen/Qwen1.5-0.5B-Chat-GPTQ-Int8",
|
||||
DownloadSource.MODELSCOPE: "qwen/Qwen1.5-0.5B-Chat-GPTQ-Int8",
|
||||
},
|
||||
"Qwen1.5-0.5B-int4-Chat": {
|
||||
"Qwen1.5-0.5B-Chat-AWQ": {
|
||||
DownloadSource.DEFAULT: "Qwen/Qwen1.5-0.5B-Chat-AWQ",
|
||||
DownloadSource.MODELSCOPE: "qwen/Qwen1.5-0.5B-Chat-AWQ",
|
||||
},
|
||||
"Qwen1.5-1.8B-int8-Chat": {
|
||||
"Qwen1.5-1.8B-Chat-GPTQ-Int8": {
|
||||
DownloadSource.DEFAULT: "Qwen/Qwen1.5-1.8B-Chat-GPTQ-Int8",
|
||||
DownloadSource.MODELSCOPE: "qwen/Qwen1.5-1.8B-Chat-GPTQ-Int8",
|
||||
},
|
||||
"Qwen1.5-1.8B-int4-Chat": {
|
||||
"Qwen1.5-1.8B-Chat-AWQ": {
|
||||
DownloadSource.DEFAULT: "Qwen/Qwen1.5-1.8B-Chat-AWQ",
|
||||
DownloadSource.MODELSCOPE: "qwen/Qwen1.5-1.8B-Chat-AWQ",
|
||||
},
|
||||
"Qwen1.5-4B-int8-Chat": {
|
||||
"Qwen1.5-4B-Chat-GPTQ-Int8": {
|
||||
DownloadSource.DEFAULT: "Qwen/Qwen1.5-4B-Chat-GPTQ-Int8",
|
||||
DownloadSource.MODELSCOPE: "qwen/Qwen1.5-4B-Chat-GPTQ-Int8",
|
||||
},
|
||||
"Qwen1.5-4B-int4-Chat": {
|
||||
"Qwen1.5-4B-Chat-AWQ": {
|
||||
DownloadSource.DEFAULT: "Qwen/Qwen1.5-4B-Chat-AWQ",
|
||||
DownloadSource.MODELSCOPE: "qwen/Qwen1.5-4B-Chat-AWQ",
|
||||
},
|
||||
"Qwen1.5-7B-int8-Chat": {
|
||||
"Qwen1.5-7B-Chat-GPTQ-Int8": {
|
||||
DownloadSource.DEFAULT: "Qwen/Qwen1.5-7B-Chat-GPTQ-Int8",
|
||||
DownloadSource.MODELSCOPE: "qwen/Qwen1.5-7B-Chat-GPTQ-Int8",
|
||||
},
|
||||
"Qwen1.5-7B-int4-Chat": {
|
||||
"Qwen1.5-7B-Chat-AWQ": {
|
||||
DownloadSource.DEFAULT: "Qwen/Qwen1.5-7B-Chat-AWQ",
|
||||
DownloadSource.MODELSCOPE: "qwen/Qwen1.5-7B-Chat-AWQ",
|
||||
},
|
||||
"Qwen1.5-14B-int8-Chat": {
|
||||
"Qwen1.5-14B-Chat-GPTQ-Int8": {
|
||||
DownloadSource.DEFAULT: "Qwen/Qwen1.5-14B-Chat-GPTQ-Int8",
|
||||
DownloadSource.MODELSCOPE: "qwen/Qwen1.5-14B-Chat-GPTQ-Int8",
|
||||
},
|
||||
"Qwen1.5-14B-int4-Chat": {
|
||||
"Qwen1.5-14B-Chat-AWQ": {
|
||||
DownloadSource.DEFAULT: "Qwen/Qwen1.5-14B-Chat-AWQ",
|
||||
DownloadSource.MODELSCOPE: "qwen/Qwen1.5-14B-Chat-AWQ",
|
||||
},
|
||||
"Qwen1.5-32B-int4-Chat": {
|
||||
"Qwen1.5-32B-Chat-AWQ": {
|
||||
DownloadSource.DEFAULT: "Qwen/Qwen1.5-32B-Chat-AWQ",
|
||||
DownloadSource.MODELSCOPE: "qwen/Qwen1.5-32B-Chat-AWQ",
|
||||
},
|
||||
"Qwen1.5-72B-int8-Chat": {
|
||||
"Qwen1.5-72B-Chat-GPTQ-Int8": {
|
||||
DownloadSource.DEFAULT: "Qwen/Qwen1.5-72B-Chat-GPTQ-Int8",
|
||||
DownloadSource.MODELSCOPE: "qwen/Qwen1.5-72B-Chat-GPTQ-Int8",
|
||||
},
|
||||
"Qwen1.5-72B-int4-Chat": {
|
||||
"Qwen1.5-72B-Chat-AWQ": {
|
||||
DownloadSource.DEFAULT: "Qwen/Qwen1.5-72B-Chat-AWQ",
|
||||
DownloadSource.MODELSCOPE: "qwen/Qwen1.5-72B-Chat-AWQ",
|
||||
},
|
||||
"Qwen1.5-110B-int4-Chat": {
|
||||
"Qwen1.5-110B-Chat-AWQ": {
|
||||
DownloadSource.DEFAULT: "Qwen/Qwen1.5-110B-Chat-AWQ",
|
||||
DownloadSource.MODELSCOPE: "qwen/Qwen1.5-110B-Chat-AWQ",
|
||||
},
|
||||
"Qwen1.5-MoE-A2.7B-int4-Chat": {
|
||||
"Qwen1.5-MoE-A2.7B-Chat-GPTQ-Int4": {
|
||||
DownloadSource.DEFAULT: "Qwen/Qwen1.5-MoE-A2.7B-Chat-GPTQ-Int4",
|
||||
DownloadSource.MODELSCOPE: "qwen/Qwen1.5-MoE-A2.7B-Chat-GPTQ-Int4",
|
||||
},
|
||||
"Qwen1.5-Code-7B": {
|
||||
"CodeQwen1.5-7B": {
|
||||
DownloadSource.DEFAULT: "Qwen/CodeQwen1.5-7B",
|
||||
DownloadSource.MODELSCOPE: "qwen/CodeQwen1.5-7B",
|
||||
},
|
||||
"Qwen1.5-Code-7B-Chat": {
|
||||
"CodeQwen1.5-7B-Chat": {
|
||||
DownloadSource.DEFAULT: "Qwen/CodeQwen1.5-7B-Chat",
|
||||
DownloadSource.MODELSCOPE: "qwen/CodeQwen1.5-7B-Chat",
|
||||
},
|
||||
"Qwen1.5-Code-7B-int4-Chat": {
|
||||
"CodeQwen1.5-7B-Chat-AWQ": {
|
||||
DownloadSource.DEFAULT: "Qwen/CodeQwen1.5-7B-Chat-AWQ",
|
||||
DownloadSource.MODELSCOPE: "qwen/CodeQwen1.5-7B-Chat-AWQ",
|
||||
},
|
||||
@ -1591,51 +1686,51 @@ register_model_group(
|
||||
|
||||
register_model_group(
|
||||
models={
|
||||
"Qwen2VL-2B-Instruct": {
|
||||
"Qwen2-VL-2B-Instruct": {
|
||||
DownloadSource.DEFAULT: "Qwen/Qwen2-VL-2B-Instruct",
|
||||
DownloadSource.MODELSCOPE: "qwen/Qwen2-VL-2B-Instruct",
|
||||
},
|
||||
"Qwen2VL-7B-Instruct": {
|
||||
"Qwen2-VL-7B-Instruct": {
|
||||
DownloadSource.DEFAULT: "Qwen/Qwen2-VL-7B-Instruct",
|
||||
DownloadSource.MODELSCOPE: "qwen/Qwen2-VL-7B-Instruct",
|
||||
},
|
||||
"Qwen2VL-72B-Instruct": {
|
||||
"Qwen2-VL-72B-Instruct": {
|
||||
DownloadSource.DEFAULT: "Qwen/Qwen2-VL-72B-Instruct",
|
||||
DownloadSource.MODELSCOPE: "qwen/Qwen2-VL-72B-Instruct",
|
||||
},
|
||||
"Qwen2VL-2B-Instruct-GPTQ-Int8": {
|
||||
"Qwen2-VL-2B-Instruct-GPTQ-Int8": {
|
||||
DownloadSource.DEFAULT: "Qwen/Qwen2-VL-2B-Instruct-GPTQ-Int8",
|
||||
DownloadSource.MODELSCOPE: "qwen/Qwen2-VL-2B-Instruct-GPTQ-Int8",
|
||||
},
|
||||
"Qwen2VL-2B-Instruct-GPTQ-Int4": {
|
||||
"Qwen2-VL-2B-Instruct-GPTQ-Int4": {
|
||||
DownloadSource.DEFAULT: "Qwen/Qwen2-VL-2B-Instruct-GPTQ-Int4",
|
||||
DownloadSource.MODELSCOPE: "qwen/Qwen2-VL-2B-Instruct-GPTQ-Int4",
|
||||
},
|
||||
"Qwen2VL-2B-Instruct-AWQ": {
|
||||
"Qwen2-VL-2B-Instruct-AWQ": {
|
||||
DownloadSource.DEFAULT: "Qwen/Qwen2-VL-2B-Instruct-AWQ",
|
||||
DownloadSource.MODELSCOPE: "qwen/Qwen2-VL-2B-Instruct-AWQ",
|
||||
},
|
||||
"Qwen2VL-7B-Instruct-GPTQ-Int8": {
|
||||
"Qwen2-VL-7B-Instruct-GPTQ-Int8": {
|
||||
DownloadSource.DEFAULT: "Qwen/Qwen2-VL-7B-Instruct-GPTQ-Int8",
|
||||
DownloadSource.MODELSCOPE: "qwen/Qwen2-VL-7B-Instruct-GPTQ-Int8",
|
||||
},
|
||||
"Qwen2VL-7B-Instruct-GPTQ-Int4": {
|
||||
"Qwen2-VL-7B-Instruct-GPTQ-Int4": {
|
||||
DownloadSource.DEFAULT: "Qwen/Qwen2-VL-7B-Instruct-GPTQ-Int4",
|
||||
DownloadSource.MODELSCOPE: "qwen/Qwen2-VL-7B-Instruct-GPTQ-Int4",
|
||||
},
|
||||
"Qwen2VL-7B-Instruct-AWQ": {
|
||||
"Qwen2-VL-7B-Instruct-AWQ": {
|
||||
DownloadSource.DEFAULT: "Qwen/Qwen2-VL-7B-Instruct-AWQ",
|
||||
DownloadSource.MODELSCOPE: "qwen/Qwen2-VL-7B-Instruct-AWQ",
|
||||
},
|
||||
"Qwen2VL-72B-Instruct-GPTQ-Int8": {
|
||||
"Qwen2-VL-72B-Instruct-GPTQ-Int8": {
|
||||
DownloadSource.DEFAULT: "Qwen/Qwen2-VL-72B-Instruct-GPTQ-Int8",
|
||||
DownloadSource.MODELSCOPE: "qwen/Qwen2-VL-72B-Instruct-GPTQ-Int8",
|
||||
},
|
||||
"Qwen2VL-72B-Instruct-GPTQ-Int4": {
|
||||
"Qwen2-VL-72B-Instruct-GPTQ-Int4": {
|
||||
DownloadSource.DEFAULT: "Qwen/Qwen2-VL-72B-Instruct-GPTQ-Int4",
|
||||
DownloadSource.MODELSCOPE: "qwen/Qwen2-VL-72B-Instruct-GPTQ-Int4",
|
||||
},
|
||||
"Qwen2VL-72B-Instruct-AWQ": {
|
||||
"Qwen2-VL-72B-Instruct-AWQ": {
|
||||
DownloadSource.DEFAULT: "Qwen/Qwen2-VL-72B-Instruct-AWQ",
|
||||
DownloadSource.MODELSCOPE: "qwen/Qwen2-VL-72B-Instruct-AWQ",
|
||||
},
|
||||
@ -1712,11 +1807,11 @@ register_model_group(
|
||||
|
||||
register_model_group(
|
||||
models={
|
||||
"Vicuna1.5-7B-Chat": {
|
||||
"Vicuna-v1.5-7B-Chat": {
|
||||
DownloadSource.DEFAULT: "lmsys/vicuna-7b-v1.5",
|
||||
DownloadSource.MODELSCOPE: "Xorbits/vicuna-7b-v1.5",
|
||||
},
|
||||
"Vicuna1.5-13B-Chat": {
|
||||
"Vicuna-v1.5-13B-Chat": {
|
||||
DownloadSource.DEFAULT: "lmsys/vicuna-13b-v1.5",
|
||||
DownloadSource.MODELSCOPE: "Xorbits/vicuna-13b-v1.5",
|
||||
},
|
||||
@ -1725,6 +1820,17 @@ register_model_group(
|
||||
)
|
||||
|
||||
|
||||
register_model_group(
|
||||
models={
|
||||
"Video-LLaVA-7B-Chat": {
|
||||
DownloadSource.DEFAULT: "LanguageBind/Video-LLaVA-7B-hf",
|
||||
},
|
||||
},
|
||||
template="video_llava",
|
||||
vision=True,
|
||||
)
|
||||
|
||||
|
||||
register_model_group(
|
||||
models={
|
||||
"XuanYuan-6B": {
|
||||
@ -1735,7 +1841,7 @@ register_model_group(
|
||||
DownloadSource.DEFAULT: "Duxiaoman-DI/XuanYuan-70B",
|
||||
DownloadSource.MODELSCOPE: "Duxiaoman-DI/XuanYuan-70B",
|
||||
},
|
||||
"XuanYuan-2-70B": {
|
||||
"XuanYuan2-70B": {
|
||||
DownloadSource.DEFAULT: "Duxiaoman-DI/XuanYuan2-70B",
|
||||
DownloadSource.MODELSCOPE: "Duxiaoman-DI/XuanYuan2-70B",
|
||||
},
|
||||
@ -1747,31 +1853,31 @@ register_model_group(
|
||||
DownloadSource.DEFAULT: "Duxiaoman-DI/XuanYuan-70B-Chat",
|
||||
DownloadSource.MODELSCOPE: "Duxiaoman-DI/XuanYuan-70B-Chat",
|
||||
},
|
||||
"XuanYuan-2-70B-Chat": {
|
||||
"XuanYuan2-70B-Chat": {
|
||||
DownloadSource.DEFAULT: "Duxiaoman-DI/XuanYuan2-70B-Chat",
|
||||
DownloadSource.MODELSCOPE: "Duxiaoman-DI/XuanYuan2-70B-Chat",
|
||||
},
|
||||
"XuanYuan-6B-int8-Chat": {
|
||||
"XuanYuan-6B-Chat-8bit": {
|
||||
DownloadSource.DEFAULT: "Duxiaoman-DI/XuanYuan-6B-Chat-8bit",
|
||||
DownloadSource.MODELSCOPE: "Duxiaoman-DI/XuanYuan-6B-Chat-8bit",
|
||||
},
|
||||
"XuanYuan-6B-int4-Chat": {
|
||||
"XuanYuan-6B-Chat-4bit": {
|
||||
DownloadSource.DEFAULT: "Duxiaoman-DI/XuanYuan-6B-Chat-4bit",
|
||||
DownloadSource.MODELSCOPE: "Duxiaoman-DI/XuanYuan-6B-Chat-4bit",
|
||||
},
|
||||
"XuanYuan-70B-int8-Chat": {
|
||||
"XuanYuan-70B-Chat-8bit": {
|
||||
DownloadSource.DEFAULT: "Duxiaoman-DI/XuanYuan-70B-Chat-8bit",
|
||||
DownloadSource.MODELSCOPE: "Duxiaoman-DI/XuanYuan-70B-Chat-8bit",
|
||||
},
|
||||
"XuanYuan-70B-int4-Chat": {
|
||||
"XuanYuan-70B-Chat-4bit": {
|
||||
DownloadSource.DEFAULT: "Duxiaoman-DI/XuanYuan-70B-Chat-4bit",
|
||||
DownloadSource.MODELSCOPE: "Duxiaoman-DI/XuanYuan-70B-Chat-4bit",
|
||||
},
|
||||
"XuanYuan-2-70B-int8-Chat": {
|
||||
"XuanYuan2-70B-Chat-8bit": {
|
||||
DownloadSource.DEFAULT: "Duxiaoman-DI/XuanYuan2-70B-Chat-8bit",
|
||||
DownloadSource.MODELSCOPE: "Duxiaoman-DI/XuanYuan2-70B-Chat-8bit",
|
||||
},
|
||||
"XuanYuan-2-70B-int4-Chat": {
|
||||
"XuanYuan2-70B-Chat-4bit": {
|
||||
DownloadSource.DEFAULT: "Duxiaoman-DI/XuanYuan2-70B-Chat-4bit",
|
||||
DownloadSource.MODELSCOPE: "Duxiaoman-DI/XuanYuan2-70B-Chat-4bit",
|
||||
},
|
||||
@ -1876,19 +1982,19 @@ register_model_group(
|
||||
DownloadSource.DEFAULT: "01-ai/Yi-34B-Chat",
|
||||
DownloadSource.MODELSCOPE: "01ai/Yi-34B-Chat",
|
||||
},
|
||||
"Yi-6B-int8-Chat": {
|
||||
"Yi-6B-Chat-8bits": {
|
||||
DownloadSource.DEFAULT: "01-ai/Yi-6B-Chat-8bits",
|
||||
DownloadSource.MODELSCOPE: "01ai/Yi-6B-Chat-8bits",
|
||||
},
|
||||
"Yi-6B-int4-Chat": {
|
||||
"Yi-6B-Chat-4bits": {
|
||||
DownloadSource.DEFAULT: "01-ai/Yi-6B-Chat-4bits",
|
||||
DownloadSource.MODELSCOPE: "01ai/Yi-6B-Chat-4bits",
|
||||
},
|
||||
"Yi-34B-int8-Chat": {
|
||||
"Yi-34B-Chat-8bits": {
|
||||
DownloadSource.DEFAULT: "01-ai/Yi-34B-Chat-8bits",
|
||||
DownloadSource.MODELSCOPE: "01ai/Yi-34B-Chat-8bits",
|
||||
},
|
||||
"Yi-34B-int4-Chat": {
|
||||
"Yi-34B-Chat-4bits": {
|
||||
DownloadSource.DEFAULT: "01-ai/Yi-34B-Chat-4bits",
|
||||
DownloadSource.MODELSCOPE: "01ai/Yi-34B-Chat-4bits",
|
||||
},
|
||||
@ -1939,10 +2045,10 @@ register_model_group(
|
||||
|
||||
register_model_group(
|
||||
models={
|
||||
"YiVL-6B-Chat": {
|
||||
"Yi-VL-6B-Chat": {
|
||||
DownloadSource.DEFAULT: "BUAADreamer/Yi-VL-6B-hf",
|
||||
},
|
||||
"YiVL-34B-Chat": {
|
||||
"Yi-VL-34B-Chat": {
|
||||
DownloadSource.DEFAULT: "BUAADreamer/Yi-VL-34B-hf",
|
||||
},
|
||||
},
|
||||
|
@ -25,7 +25,7 @@ from .model_utils.misc import register_autoclass
|
||||
from .model_utils.mod import convert_pretrained_model_to_mod, load_mod_pretrained_model
|
||||
from .model_utils.unsloth import load_unsloth_pretrained_model
|
||||
from .model_utils.valuehead import load_valuehead_params
|
||||
from .model_utils.visual import get_image_seqlen
|
||||
from .model_utils.visual import get_image_seqlen, get_patch_size, get_vision_feature_select_strategy
|
||||
from .patcher import patch_config, patch_model, patch_tokenizer, patch_valuehead_model
|
||||
|
||||
|
||||
@ -100,9 +100,11 @@ def load_tokenizer(model_args: "ModelArguments") -> "TokenizerModule":
|
||||
setattr(processor, "tokenizer", tokenizer)
|
||||
setattr(processor, "image_seqlen", get_image_seqlen(config))
|
||||
setattr(processor, "image_resolution", model_args.image_resolution)
|
||||
setattr(processor, "patch_size", get_patch_size(config))
|
||||
setattr(processor, "video_resolution", model_args.video_resolution)
|
||||
setattr(processor, "video_fps", model_args.video_fps)
|
||||
setattr(processor, "video_maxlen", model_args.video_maxlen)
|
||||
setattr(processor, "vision_feature_select_strategy", get_vision_feature_select_strategy(config))
|
||||
except Exception:
|
||||
processor = None
|
||||
|
||||
@ -155,7 +157,6 @@ def load_model(
|
||||
load_class = AutoModelForVision2Seq
|
||||
else:
|
||||
load_class = AutoModelForCausalLM
|
||||
|
||||
if model_args.train_from_scratch:
|
||||
model = load_class.from_config(config)
|
||||
else:
|
||||
|
@ -34,7 +34,7 @@ def find_all_linear_modules(model: "PreTrainedModel", freeze_vision_tower: bool)
|
||||
forbidden_modules.add("output_layer")
|
||||
elif model_type == "internlm2":
|
||||
forbidden_modules.add("output")
|
||||
elif model_type in ["llava", "paligemma"]:
|
||||
elif model_type in ["llava", "llava_next", "llava_next_video", "paligemma", "video_llava"]:
|
||||
forbidden_modules.add("multi_modal_projector")
|
||||
elif model_type == "qwen2_vl":
|
||||
forbidden_modules.add("merger")
|
||||
|
@ -92,7 +92,7 @@ def autocast_projector_dtype(model: "PreTrainedModel", model_args: "ModelArgumen
|
||||
|
||||
if getattr(model, "quantization_method", None):
|
||||
model_type = getattr(model.config, "model_type", None)
|
||||
if model_type in ["llava", "paligemma"]:
|
||||
if model_type in ["llava", "llava_next", "llava_next_video", "paligemma", "video_llava"]:
|
||||
mm_projector: "torch.nn.Module" = getattr(model, "multi_modal_projector")
|
||||
elif model_type == "qwen2_vl":
|
||||
mm_projector: "torch.nn.Module" = getattr(getattr(model, "visual"), "merger")
|
||||
@ -108,7 +108,13 @@ def configure_visual_model(config: "PretrainedConfig") -> None:
|
||||
Patches VLMs before loading them.
|
||||
"""
|
||||
model_type = getattr(config, "model_type", None)
|
||||
if model_type == "llava": # required for ds zero3 and valuehead models
|
||||
if model_type in [
|
||||
"llava",
|
||||
"llava_next",
|
||||
"llava_next_video",
|
||||
"paligemma",
|
||||
"video_llava",
|
||||
]: # required for ds zero3 and valuehead models
|
||||
setattr(config, "hidden_size", getattr(config.text_config, "hidden_size", None))
|
||||
|
||||
if getattr(config, "is_yi_vl_derived_model", None):
|
||||
@ -122,7 +128,7 @@ def get_forbidden_modules(config: "PretrainedConfig", finetuning_args: "Finetuni
|
||||
"""
|
||||
model_type = getattr(config, "model_type", None)
|
||||
forbidden_modules = set()
|
||||
if model_type in ["llava", "paligemma"]:
|
||||
if model_type in ["llava", "llava_next", "llava_next_video", "paligemma", "video_llava"]:
|
||||
if finetuning_args.freeze_vision_tower:
|
||||
forbidden_modules.add("vision_tower")
|
||||
|
||||
@ -150,12 +156,28 @@ def get_image_seqlen(config: "PretrainedConfig") -> int:
|
||||
image_seqlen += 1
|
||||
elif model_type == "paligemma":
|
||||
image_seqlen = config.vision_config.num_image_tokens
|
||||
elif model_type == "qwen2_vl": # variable length
|
||||
else:
|
||||
image_seqlen = -1
|
||||
|
||||
return image_seqlen
|
||||
|
||||
|
||||
def get_patch_size(config: "PretrainedConfig") -> int:
|
||||
r"""
|
||||
Computes the patch size of the vit.
|
||||
"""
|
||||
patch_size = getattr(config.vision_config, "patch_size", -1)
|
||||
return patch_size
|
||||
|
||||
|
||||
def get_vision_feature_select_strategy(config: "PretrainedConfig") -> int:
|
||||
r"""
|
||||
Get the vision_feature_select_strategy.
|
||||
"""
|
||||
vision_feature_select_strategy = getattr(config, "vision_feature_select_strategy", "default")
|
||||
return vision_feature_select_strategy
|
||||
|
||||
|
||||
def patch_target_modules(
|
||||
config: "PretrainedConfig", finetuning_args: "FinetuningArguments", target_modules: Sequence[str]
|
||||
) -> Union[str, List[str]]:
|
||||
@ -164,7 +186,7 @@ def patch_target_modules(
|
||||
"""
|
||||
model_type = getattr(config, "model_type", None)
|
||||
if finetuning_args.freeze_vision_tower:
|
||||
if model_type in ["llava", "paligemma"]:
|
||||
if model_type in ["llava", "llava_next", "llava_next_video", "paligemma", "video_llava"]:
|
||||
return "^(?!.*vision_tower).*(?:{}).*".format("|".join(target_modules))
|
||||
elif model_type == "qwen2_vl":
|
||||
return "^(?!.*visual).*(?:{}).*".format("|".join(target_modules))
|
||||
|
@ -115,13 +115,6 @@ def get_model_path(model_name: str) -> str:
|
||||
return model_path
|
||||
|
||||
|
||||
def get_prefix(model_name: str) -> str:
|
||||
r"""
|
||||
Gets the prefix of the model name to obtain the model family.
|
||||
"""
|
||||
return model_name.split("-")[0]
|
||||
|
||||
|
||||
def get_model_info(model_name: str) -> Tuple[str, str]:
|
||||
r"""
|
||||
Gets the necessary information of this model.
|
||||
@ -137,21 +130,14 @@ def get_template(model_name: str) -> str:
|
||||
r"""
|
||||
Gets the template name if the model is a chat model.
|
||||
"""
|
||||
if (
|
||||
model_name
|
||||
and any(suffix in model_name for suffix in ("-Chat", "-Instruct"))
|
||||
and get_prefix(model_name) in DEFAULT_TEMPLATE
|
||||
):
|
||||
return DEFAULT_TEMPLATE[get_prefix(model_name)]
|
||||
|
||||
return "default"
|
||||
return DEFAULT_TEMPLATE.get(model_name, "default")
|
||||
|
||||
|
||||
def get_visual(model_name: str) -> bool:
|
||||
r"""
|
||||
Judges if the model is a vision language model.
|
||||
"""
|
||||
return get_prefix(model_name) in VISION_MODELS
|
||||
return model_name in VISION_MODELS
|
||||
|
||||
|
||||
def list_checkpoints(model_name: str, finetuning_type: str) -> "gr.Dropdown":
|
||||
|
@ -136,6 +136,38 @@ def test_llava_plugin():
|
||||
_check_plugin(**check_inputs)
|
||||
|
||||
|
||||
def test_llava_next_plugin():
|
||||
tokenizer, processor = _load_tokenizer_module(model_name_or_path="llava-hf/llava-v1.6-vicuna-7b-hf")
|
||||
llava_next_plugin = get_mm_plugin(name="llava_next", image_token="<image>")
|
||||
check_inputs = {"plugin": llava_next_plugin, "tokenizer": tokenizer, "processor": processor}
|
||||
image_seqlen = 1176
|
||||
check_inputs["expected_mm_messages"] = [
|
||||
{
|
||||
key: value.replace("<image>", "<image>" * image_seqlen)
|
||||
for key, value in message.items()
|
||||
}
|
||||
for message in MM_MESSAGES
|
||||
]
|
||||
check_inputs["expected_mm_inputs"] = _get_mm_inputs(processor)
|
||||
_check_plugin(**check_inputs)
|
||||
|
||||
|
||||
def test_llava_next_video_plugin():
|
||||
tokenizer, processor = _load_tokenizer_module(model_name_or_path="llava-hf/LLaVA-NeXT-Video-7B-hf")
|
||||
llava_next_video_plugin = get_mm_plugin(name="llava_next_video", image_token="<image>", video_token="<video>")
|
||||
check_inputs = {"plugin": llava_next_video_plugin, "tokenizer": tokenizer, "processor": processor}
|
||||
image_seqlen = 1176
|
||||
check_inputs["expected_mm_messages"] = [
|
||||
{
|
||||
key: value.replace("<image>", "<image>" * image_seqlen)
|
||||
for key, value in message.items()
|
||||
}
|
||||
for message in MM_MESSAGES
|
||||
]
|
||||
check_inputs["expected_mm_inputs"] = _get_mm_inputs(processor)
|
||||
_check_plugin(**check_inputs)
|
||||
|
||||
|
||||
@pytest.mark.skipif(not HF_TOKEN, reason="Gated model.")
|
||||
def test_paligemma_plugin():
|
||||
tokenizer, processor = _load_tokenizer_module(model_name_or_path="google/paligemma-3b-pt-224")
|
||||
@ -167,3 +199,19 @@ def test_qwen2_vl_plugin():
|
||||
]
|
||||
check_inputs["expected_mm_inputs"] = _get_mm_inputs(processor)
|
||||
_check_plugin(**check_inputs)
|
||||
|
||||
|
||||
def test_video_llava_plugin():
|
||||
tokenizer, processor = _load_tokenizer_module(model_name_or_path="LanguageBind/Video-LLaVA-7B-hf")
|
||||
video_llava_plugin = get_mm_plugin(name="video_llava", image_token="<image>", video_token="<video>")
|
||||
check_inputs = {"plugin": video_llava_plugin, "tokenizer": tokenizer, "processor": processor}
|
||||
image_seqlen = 256
|
||||
check_inputs["expected_mm_messages"] = [
|
||||
{
|
||||
key: value.replace("<image>", "<image>" * image_seqlen)
|
||||
for key, value in message.items()
|
||||
}
|
||||
for message in MM_MESSAGES
|
||||
]
|
||||
check_inputs["expected_mm_inputs"] = _get_mm_inputs(processor)
|
||||
_check_plugin(**check_inputs)
|
||||
|
Loading…
x
Reference in New Issue
Block a user