mirror of
https://github.com/hiyouga/LLaMA-Factory.git
synced 2025-12-16 11:50:35 +08:00
video datasets
This commit is contained in:
@@ -24,7 +24,7 @@ if TYPE_CHECKING:
|
||||
from transformers import PreTrainedTokenizer, ProcessorMixin
|
||||
|
||||
from ...hparams import DataArguments
|
||||
from ..mm_plugin import ImageInput
|
||||
from ..mm_plugin import ImageInput, VideoInput
|
||||
from ..template import Template
|
||||
|
||||
|
||||
@@ -38,6 +38,7 @@ def _encode_feedback_example(
|
||||
system: Optional[str],
|
||||
tools: Optional[str],
|
||||
images: Sequence["ImageInput"],
|
||||
videos: Sequence["VideoInput"],
|
||||
template: "Template",
|
||||
tokenizer: "PreTrainedTokenizer",
|
||||
processor: Optional["ProcessorMixin"],
|
||||
@@ -55,8 +56,8 @@ def _encode_feedback_example(
|
||||
else:
|
||||
kl_messages = prompt + [kl_response[1]]
|
||||
|
||||
messages = template.mm_plugin.process_messages(messages, images, processor)
|
||||
kl_messages = template.mm_plugin.process_messages(kl_messages, images, processor)
|
||||
messages = template.mm_plugin.process_messages(messages, images, videos, processor)
|
||||
kl_messages = template.mm_plugin.process_messages(kl_messages, images, videos, processor)
|
||||
prompt_ids, response_ids = template.encode_oneturn(tokenizer, messages, system, tools)
|
||||
kl_prompt_ids, kl_response_ids = template.encode_oneturn(tokenizer, kl_messages, system, tools)
|
||||
|
||||
@@ -64,8 +65,8 @@ def _encode_feedback_example(
|
||||
response_ids += [tokenizer.eos_token_id]
|
||||
kl_response_ids += [tokenizer.eos_token_id]
|
||||
|
||||
prompt_ids, _ = template.mm_plugin.process_token_ids(prompt_ids, None, images, tokenizer, processor)
|
||||
kl_prompt_ids, _ = template.mm_plugin.process_token_ids(kl_prompt_ids, None, images, tokenizer, processor)
|
||||
prompt_ids, _ = template.mm_plugin.process_token_ids(prompt_ids, None, images, videos, tokenizer, processor)
|
||||
kl_prompt_ids, _ = template.mm_plugin.process_token_ids(kl_prompt_ids, None, images, videos, tokenizer, processor)
|
||||
|
||||
source_len, target_len = infer_seqlen(len(prompt_ids), len(response_ids), cutoff_len)
|
||||
prompt_ids = prompt_ids[:source_len]
|
||||
@@ -103,6 +104,7 @@ def preprocess_feedback_dataset(
|
||||
system=examples["_system"][i],
|
||||
tools=examples["_tools"][i],
|
||||
images=examples["_images"][i] or [],
|
||||
videos=examples["_videos"][i] or [],
|
||||
template=template,
|
||||
tokenizer=tokenizer,
|
||||
processor=processor,
|
||||
@@ -116,6 +118,7 @@ def preprocess_feedback_dataset(
|
||||
model_inputs["kl_labels"].append(kl_labels)
|
||||
model_inputs["kto_tags"].append(kto_tag)
|
||||
model_inputs["images"].append(examples["_images"][i])
|
||||
model_inputs["videos"].append(examples["_videos"][i])
|
||||
|
||||
desirable_num = sum([1 for tag in model_inputs["kto_tags"] if tag])
|
||||
undesirable_num = len(model_inputs["kto_tags"]) - desirable_num
|
||||
|
||||
Reference in New Issue
Block a user