[v1] use async streamer (#9741)

This commit is contained in:
Yaowei Zheng
2026-01-09 16:07:40 +08:00
committed by hiyouga
parent 766d5ae6ad
commit 8abb8fb533
6 changed files with 47 additions and 57 deletions

View File

@@ -230,7 +230,7 @@ def load_model(
)
from ..v1.plugins.model_plugins.kernels.interface import apply_default_kernels
model = apply_default_kernels(model=model, include_kernels=model_args.use_v1_kernels)
model = apply_default_kernels(model, include_kernels=model_args.use_v1_kernels)
trainable_params, all_param = count_parameters(model)
if is_trainable:

View File

@@ -15,11 +15,11 @@
import asyncio
import os
from abc import ABC, abstractmethod
from collections.abc import AsyncGenerator, Generator
from collections.abc import AsyncGenerator
from threading import Thread
import torch
from transformers import TextIteratorStreamer
from transformers import AsyncTextIteratorStreamer
from ..accelerator.interface import DistributedInterface
from ..config import ModelArguments, SampleArguments, SampleBackend
@@ -88,9 +88,10 @@ class HuggingFaceEngine(BaseEngine):
self.semaphore = asyncio.Semaphore(int(os.getenv("MAX_CONCURRENT", "1")))
@torch.inference_mode()
def get_response(self, messages: list[Message], tools: str | None = None) -> Generator[str, None, None]:
async def generate(self, messages: list[Message], tools: str | None = None) -> AsyncGenerator[str, None]:
async with self.semaphore:
model_inputs = self.renderer.render_messages(messages, tools, is_generate=True)
streamer = TextIteratorStreamer(
streamer = AsyncTextIteratorStreamer(
tokenizer=get_tokenizer(self.renderer.processor),
skip_prompt=True,
skip_special_tokens=True, # TODO: configurable
@@ -105,22 +106,8 @@ class HuggingFaceEngine(BaseEngine):
thread = Thread(target=self.model.generate, kwargs=kwargs, daemon=True)
thread.start()
def stream():
try:
return streamer.__next__()
except StopIteration:
raise StopAsyncIteration()
return stream
async def generate(self, messages: list[Message], tools: str | None = None) -> AsyncGenerator[str, None]:
async with self.semaphore:
response = self.get_response(messages, tools)
while True:
try:
yield await asyncio.to_thread(response)
except StopAsyncIteration:
break
async for token in streamer:
yield token
async def batch_infer(self, dataset: TorchDataset) -> list[Sample]:
"""Batch infer samples.

View File

@@ -28,8 +28,9 @@ Train Phase:
"""
from ..config.training_args import TrainingArguments
from ..utils.types import HFModel, Processor, TorchDataset
from .trainer_utils.data_collator import DataCollator
from ..utils.types import HFModel, TorchDataset
from .utils.data_collator import DataCollator
from .utils.rendering import Renderer
class BaseTrainer:
@@ -37,21 +38,21 @@ class BaseTrainer:
self,
args: TrainingArguments,
model: HFModel,
processor: Processor,
renderer: Renderer,
dataset: TorchDataset,
) -> None:
self.args = args
self.model = model
self.processor = processor
self.renderer = renderer
self.dataset = dataset
self.data_collator = DataCollator()
self.optimizer = None
self.lr_scheduler = None
def init_model_and_optimizer(self) -> None:
def _create_dataloader(self) -> None:
pass
def create_dataloader(self) -> None:
def _init_model_and_optimizer(self) -> None:
pass
def fit(self) -> None:

View File

@@ -87,7 +87,7 @@ class ModelEngine:
def _init_model(self) -> HFModel:
"""Init model.
Let transformers handle the model init context.
Transformers can choose the proper model init context.
https://github.com/huggingface/transformers/blob/v5.0.0rc0/src/transformers/modeling_utils.py#L3538
"""
if self.args.model_class == ModelClass.LLM:
@@ -141,7 +141,7 @@ class ModelEngine:
from ..plugins.model_plugins.kernels.interface import KernelPlugin
model = KernelPlugin(self.args.kernel_config.name)(
model=model, include_kernels=self.args.kernel_config.get("include_kernels")
model, include_kernels=self.args.kernel_config.get("include_kernels")
)
return model

View File

@@ -24,12 +24,13 @@ Init Phase:
import importlib
from pathlib import Path
from ....utils.logging import get_logger
from ....utils import logging
from ....utils.plugin import BasePlugin
from ....utils.types import HFModel
from .registry import Registry
logger = get_logger(__name__)
logger = logging.get_logger(__name__)
def scan_all_kernels():
@@ -110,27 +111,30 @@ class KernelPlugin(BasePlugin):
@KernelPlugin("auto").register()
def apply_default_kernels(**kwargs):
def apply_default_kernels(model: HFModel, include_kernels: str = None) -> HFModel:
"""Applies all default registered kernels to the model.
Args:
**kwargs: Keyword arguments passed to the kernel application function.
Typically includes the model instance and the include_kernels configuration.
model (HFModel): The model instance to apply kernels to.
include_kernels (str, optional): Comma-separated list of kernel IDs to apply.
If "auto" or True, applies all default kernels.
If None or False, no kernels are applied.
Defaults to None.
Returns:
HFModel: The model with applied kernels.
"""
if not kwargs.get("include_kernels"): # None/False/empty string
return kwargs.get("model")
elif kwargs.get("include_kernels") == "auto" or kwargs.get("include_kernels") is True: # True/auto
if not include_kernels:
return model
elif include_kernels == "auto" or include_kernels is True:
use_kernels = default_kernels.keys()
else:
use_kernels = kwargs.get("include_kernels").split(",") # "kernel_id1,kernel_id2,kernel_id3"
use_kernels = include_kernels.split(",") # "kernel_id1,kernel_id2,kernel_id3"
for kernel in use_kernels:
if kernel not in default_kernels:
raise ValueError(f"Kernel {kernel} not found")
apply_kernel(kernel, **kwargs)
apply_kernel(kernel, model=model)
return kwargs.get("model")
return model

View File

@@ -20,8 +20,6 @@ Init Phase:
"""
from typing import Optional
from ....accelerator.helper import get_current_accelerator
from .base import BaseKernel
@@ -73,14 +71,14 @@ class Registry:
return kernel_cls
@classmethod
def get(cls, kernel_id: str) -> Optional[type[BaseKernel]]:
def get(cls, kernel_id: str) -> type[BaseKernel] | None:
"""Retrieves a registered kernel implementation by its ID.
Args:
kernel_id (str): The ID of the kernel to retrieve.
Returns:
Optional[type[BaseKernel]]: The kernel class if found, else ``None``.
type[BaseKernel] | None: The kernel class if found, else ``None``.
"""
return cls._kernels.get(kernel_id)