diff --git a/tests/auto_gptq.py b/tests/auto_gptq.py index 3fd2ab12..cdf97305 100644 --- a/tests/auto_gptq.py +++ b/tests/auto_gptq.py @@ -1,6 +1,7 @@ # coding=utf-8 # Quantizes fine-tuned models with AutoGPTQ (https://github.com/PanQiWei/AutoGPTQ). # Usage: python auto_gptq.py --input_dir path_to_llama_model --output_dir path_to_quant_model --data_file alpaca.json +# --max_length 1024 --max_samples 1024 # dataset format: question (string), A (string), B (string), C (string), D (string), answer (Literal["A", "B", "C", "D"]) @@ -10,7 +11,7 @@ from transformers import AutoTokenizer from auto_gptq import AutoGPTQForCausalLM, BaseQuantizeConfig -def quantize(input_dir: str, output_dir: str, data_file: str): +def quantize(input_dir: str, output_dir: str, data_file: str, max_length: int, max_samples: int): tokenizer = AutoTokenizer.from_pretrained(input_dir, use_fast=False, padding_side="left") def format_example(examples): @@ -24,11 +25,11 @@ def quantize(input_dir: str, output_dir: str, data_file: str): prompt += "Human: {}\nAssistant: {}\n".format(user_query, bot_resp) prompt += "Human: {}\nAssistant: {}".format(examples["instruction"][i], examples["output"][i]) texts.append(prompt) - return tokenizer(texts, truncation=True, max_length=1024) + return tokenizer(texts, truncation=True, max_length=max_length) dataset = load_dataset("json", data_files=data_file)["train"] column_names = list(dataset.column_names) - dataset = dataset.select(range(1024)) + dataset = dataset.select(range(min(len(dataset), max_samples))) dataset = dataset.map(format_example, batched=True, remove_columns=column_names) dataset = dataset.shuffle()