support qwen2vl vllm infer

Former-commit-id: 207f8b069ca35a28de4588b4962e7254f451c52c
This commit is contained in:
hiyouga 2024-12-05 10:17:26 +00:00
parent 7f8c59144e
commit 88b06a0c7f
4 changed files with 123 additions and 67 deletions

View File

@ -24,7 +24,7 @@ from torch.utils.data import DataLoader
from tqdm import tqdm from tqdm import tqdm
from transformers import DataCollatorForLanguageModeling from transformers import DataCollatorForLanguageModeling
from llamafactory.data import get_dataset, get_template_and_fix_tokenizer, MultiModalDataCollatorForSeq2Seq from llamafactory.data import MultiModalDataCollatorForSeq2Seq, get_dataset, get_template_and_fix_tokenizer
from llamafactory.extras.constants import IGNORE_INDEX from llamafactory.extras.constants import IGNORE_INDEX
from llamafactory.hparams import get_train_args from llamafactory.hparams import get_train_args
from llamafactory.model import load_tokenizer from llamafactory.model import load_tokenizer
@ -71,7 +71,9 @@ def calculate_lr(
if stage == "pt": if stage == "pt":
data_collator = DataCollatorForLanguageModeling(tokenizer=tokenizer, mlm=False) data_collator = DataCollatorForLanguageModeling(tokenizer=tokenizer, mlm=False)
elif stage == "sft": elif stage == "sft":
data_collator = MultiModalDataCollatorForSeq2Seq(template=template, tokenizer=tokenizer, label_pad_token_id=IGNORE_INDEX) data_collator = MultiModalDataCollatorForSeq2Seq(
template=template, tokenizer=tokenizer, label_pad_token_id=IGNORE_INDEX
)
else: else:
raise NotImplementedError(f"Stage does not supported: {stage}.") raise NotImplementedError(f"Stage does not supported: {stage}.")

View File

@ -16,16 +16,25 @@ import json
import fire import fire
from transformers import Seq2SeqTrainingArguments from transformers import Seq2SeqTrainingArguments
from vllm import LLM, SamplingParams
from vllm.lora.request import LoRARequest
from llamafactory.data import get_dataset, get_template_and_fix_tokenizer from llamafactory.data import get_dataset, get_template_and_fix_tokenizer
from llamafactory.extras.constants import IGNORE_INDEX from llamafactory.extras.constants import IGNORE_INDEX
from llamafactory.extras.misc import get_device_count from llamafactory.extras.misc import get_device_count
from llamafactory.extras.packages import is_pillow_available, is_vllm_available
from llamafactory.hparams import get_infer_args from llamafactory.hparams import get_infer_args
from llamafactory.model import load_tokenizer from llamafactory.model import load_tokenizer
if is_pillow_available():
from PIL import Image
from PIL.Image import Image as ImageObject
if is_vllm_available():
from vllm import LLM, SamplingParams
from vllm.lora.request import LoRARequest
def vllm_infer( def vllm_infer(
model_name_or_path: str, model_name_or_path: str,
adapter_name_or_path: str = None, adapter_name_or_path: str = None,
@ -64,15 +73,29 @@ def vllm_infer(
) )
) )
training_args = Seq2SeqTrainingArguments(output_dir="dummy_dir", predict_with_generate=True) training_args = Seq2SeqTrainingArguments(output_dir="dummy_dir")
tokenizer_module = load_tokenizer(model_args) tokenizer_module = load_tokenizer(model_args)
tokenizer = tokenizer_module["tokenizer"] tokenizer = tokenizer_module["tokenizer"]
template = get_template_and_fix_tokenizer(tokenizer, data_args) template_obj = get_template_and_fix_tokenizer(tokenizer, data_args)
dataset = get_dataset(template, model_args, data_args, training_args, "ppo", **tokenizer_module)["train_dataset"] template_obj.mm_plugin.expand_mm_tokens = False # for vllm generate
dataset_module = get_dataset(template_obj, model_args, data_args, training_args, "ppo", **tokenizer_module)
inputs, prompts, labels = [], [], [] inputs, prompts, labels = [], [], []
for sample in dataset: for sample in dataset_module["train_dataset"]:
inputs.append({"prompt_token_ids": sample["input_ids"]}) if sample["images"]:
multi_modal_data = {"image": []}
for image in sample["images"]:
if not isinstance(image, (str, ImageObject)):
raise ValueError(f"Expected image input is a path or PIL.Image, but got {type(image)}.")
if isinstance(image, str):
image = Image.open(image).convert("RGB")
multi_modal_data["image"].append(image)
else:
multi_modal_data = None
inputs.append({"prompt_token_ids": sample["input_ids"], "multi_modal_data": multi_modal_data})
prompts.append(tokenizer.decode(sample["input_ids"], skip_special_tokens=False)) prompts.append(tokenizer.decode(sample["input_ids"], skip_special_tokens=False))
labels.append( labels.append(
tokenizer.decode(list(filter(lambda x: x != IGNORE_INDEX, sample["labels"])), skip_special_tokens=False) tokenizer.decode(list(filter(lambda x: x != IGNORE_INDEX, sample["labels"])), skip_special_tokens=False)
@ -100,6 +123,9 @@ def vllm_infer(
"disable_log_stats": True, "disable_log_stats": True,
"enable_lora": model_args.adapter_name_or_path is not None, "enable_lora": model_args.adapter_name_or_path is not None,
} }
if template_obj.mm_plugin.__class__.__name__ != "BasePlugin":
engine_args["limit_mm_per_prompt"] = {"image": 4, "video": 2}
if isinstance(model_args.vllm_config, dict): if isinstance(model_args.vllm_config, dict):
engine_args.update(model_args.vllm_config) engine_args.update(model_args.vllm_config)

View File

@ -19,7 +19,7 @@ from typing_extensions import override
from ..data import get_template_and_fix_tokenizer from ..data import get_template_and_fix_tokenizer
from ..extras import logging from ..extras import logging
from ..extras.constants import IMAGE_PLACEHOLDER from ..extras.constants import IMAGE_PLACEHOLDER, VIDEO_PLACEHOLDER
from ..extras.misc import get_device_count from ..extras.misc import get_device_count
from ..extras.packages import is_pillow_available, is_vllm_available from ..extras.packages import is_pillow_available, is_vllm_available
from ..model import load_config, load_tokenizer from ..model import load_config, load_tokenizer
@ -67,6 +67,7 @@ class VllmEngine(BaseEngine):
self.processor = tokenizer_module["processor"] self.processor = tokenizer_module["processor"]
self.tokenizer.padding_side = "left" self.tokenizer.padding_side = "left"
self.template = get_template_and_fix_tokenizer(self.tokenizer, data_args) self.template = get_template_and_fix_tokenizer(self.tokenizer, data_args)
self.template.mm_plugin.expand_mm_tokens = False # for vllm generate
self.generating_args = generating_args.to_dict() self.generating_args = generating_args.to_dict()
engine_args = { engine_args = {
@ -83,6 +84,9 @@ class VllmEngine(BaseEngine):
"enable_lora": model_args.adapter_name_or_path is not None, "enable_lora": model_args.adapter_name_or_path is not None,
"max_lora_rank": model_args.vllm_max_lora_rank, "max_lora_rank": model_args.vllm_max_lora_rank,
} }
if self.template.mm_plugin.__class__.__name__ != "BasePlugin":
engine_args["limit_mm_per_prompt"] = {"image": 4, "video": 2}
if isinstance(model_args.vllm_config, dict): if isinstance(model_args.vllm_config, dict):
engine_args.update(model_args.vllm_config) engine_args.update(model_args.vllm_config)
@ -108,19 +112,21 @@ class VllmEngine(BaseEngine):
**input_kwargs, **input_kwargs,
) -> AsyncIterator["RequestOutput"]: ) -> AsyncIterator["RequestOutput"]:
request_id = f"chatcmpl-{uuid.uuid4().hex}" request_id = f"chatcmpl-{uuid.uuid4().hex}"
mm_input_dict = {"images": [], "videos": [], "imglens": [0], "vidlens": [0]}
if images is not None: if images is not None:
mm_input_dict.update({"images": images, "imglens": [len(images)]})
if not any(IMAGE_PLACEHOLDER in message["content"] for message in messages): if not any(IMAGE_PLACEHOLDER in message["content"] for message in messages):
messages[0]["content"] = IMAGE_PLACEHOLDER * len(images) + messages[0]["content"] messages[0]["content"] = IMAGE_PLACEHOLDER * len(images) + messages[0]["content"]
if self.template.mm_plugin.__class__.__name__ == "Qwen2vlPlugin": # temporary solution if videos is not None:
image_str = f"<|vision_start|>{self.template.mm_plugin.image_token}<|vision_end|>" mm_input_dict.update({"videos": videos, "vidlens": [len(videos)]})
else: if not any(VIDEO_PLACEHOLDER in message["content"] for message in messages):
image_str = self.template.mm_plugin.image_token or "" messages[0]["content"] = VIDEO_PLACEHOLDER * len(videos) + messages[0]["content"]
paired_messages = [ messages = self.template.mm_plugin.process_messages(
{"role": message["role"], "content": message["content"].replace(IMAGE_PLACEHOLDER, image_str)} messages, mm_input_dict["images"], mm_input_dict["videos"], self.processor
for message in messages )
] + [{"role": "assistant", "content": ""}] paired_messages = messages + [{"role": "assistant", "content": ""}]
system = system or self.generating_args["default_system"] system = system or self.generating_args["default_system"]
prompt_ids, _ = self.template.encode_oneturn(self.tokenizer, paired_messages, system, tools) prompt_ids, _ = self.template.encode_oneturn(self.tokenizer, paired_messages, system, tools)
prompt_length = len(prompt_ids) prompt_length = len(prompt_ids)
@ -168,7 +174,7 @@ class VllmEngine(BaseEngine):
) )
if images is not None: # add image features if images is not None: # add image features
image_data = [] multi_modal_data = {"image": []}
for image in images: for image in images:
if not isinstance(image, (str, ImageObject)): if not isinstance(image, (str, ImageObject)):
raise ValueError(f"Expected image input is a path or PIL.Image, but got {type(image)}.") raise ValueError(f"Expected image input is a path or PIL.Image, but got {type(image)}.")
@ -176,9 +182,7 @@ class VllmEngine(BaseEngine):
if isinstance(image, str): if isinstance(image, str):
image = Image.open(image).convert("RGB") image = Image.open(image).convert("RGB")
image_data.append(image) multi_modal_data["image"].append(image)
multi_modal_data = {"image": image_data}
else: else:
multi_modal_data = None multi_modal_data = None

View File

@ -62,6 +62,7 @@ class BasePlugin:
def __init__(self, image_token: Optional[str], video_token: Optional[str]) -> None: def __init__(self, image_token: Optional[str], video_token: Optional[str]) -> None:
self.image_token = image_token self.image_token = image_token
self.video_token = video_token self.video_token = video_token
self.expand_mm_tokens = True
def _validate_input( def _validate_input(
self, self,
@ -259,7 +260,7 @@ class LlavaPlugin(BasePlugin):
) -> List[Dict[str, str]]: ) -> List[Dict[str, str]]:
self._validate_input(images, videos) self._validate_input(images, videos)
num_image_tokens = 0 num_image_tokens = 0
image_seqlen = getattr(processor, "image_seqlen") image_seqlen = getattr(processor, "image_seqlen") if self.expand_mm_tokens else 1
messages = deepcopy(messages) messages = deepcopy(messages)
for message in messages: for message in messages:
content = message["content"] content = message["content"]
@ -310,11 +311,13 @@ class LlavaNextPlugin(BasePlugin):
for message in messages: for message in messages:
content = message["content"] content = message["content"]
while IMAGE_PLACEHOLDER in content: while IMAGE_PLACEHOLDER in content:
image_size = next(image_sizes) if self.expand_mm_tokens:
orig_height, orig_width = image_size orig_height, orig_width = next(image_sizes)
image_seqlen = processor._get_number_of_features(orig_height, orig_width, height, width) image_seqlen = processor._get_number_of_features(orig_height, orig_width, height, width)
if getattr(processor, "vision_feature_select_strategy") == "default": if getattr(processor, "vision_feature_select_strategy") == "default":
image_seqlen -= 1 image_seqlen -= 1
else:
image_seqlen = 1
num_image_tokens += 1 num_image_tokens += 1
content = content.replace(IMAGE_PLACEHOLDER, "{{image}}" * image_seqlen, 1) content = content.replace(IMAGE_PLACEHOLDER, "{{image}}" * image_seqlen, 1)
@ -359,11 +362,13 @@ class LlavaNextVideoPlugin(BasePlugin):
for message in messages: for message in messages:
content = message["content"] content = message["content"]
while IMAGE_PLACEHOLDER in content: while IMAGE_PLACEHOLDER in content:
image_size = next(image_sizes) if self.expand_mm_tokens:
orig_height, orig_width = image_size orig_height, orig_width = next(image_sizes)
image_seqlen = processor._get_number_of_features(orig_height, orig_width, height, width) image_seqlen = processor._get_number_of_features(orig_height, orig_width, height, width)
if getattr(processor, "vision_feature_select_strategy") == "default": if getattr(processor, "vision_feature_select_strategy") == "default":
image_seqlen -= 1 image_seqlen -= 1
else:
image_seqlen = 1
num_image_tokens += 1 num_image_tokens += 1
content = content.replace(IMAGE_PLACEHOLDER, "{{image}}" * image_seqlen, 1) content = content.replace(IMAGE_PLACEHOLDER, "{{image}}" * image_seqlen, 1)
@ -376,6 +381,7 @@ class LlavaNextVideoPlugin(BasePlugin):
num_frames = pixel_values_video.shape[0] # frame dim is always after batch dim num_frames = pixel_values_video.shape[0] # frame dim is always after batch dim
image_seqlen = (height // processor.patch_size) * (width // processor.patch_size) image_seqlen = (height // processor.patch_size) * (width // processor.patch_size)
video_seqlen = image_seqlen // 4 * num_frames # divide by 4 needed for avg pooling layer video_seqlen = image_seqlen // 4 * num_frames # divide by 4 needed for avg pooling layer
video_seqlen = video_seqlen if self.expand_mm_tokens else 1
for message in messages: for message in messages:
content = message["content"] content = message["content"]
while VIDEO_PLACEHOLDER in content: while VIDEO_PLACEHOLDER in content:
@ -443,7 +449,7 @@ class PaliGemmaPlugin(BasePlugin):
) -> Tuple[List[int], Optional[List[int]]]: ) -> Tuple[List[int], Optional[List[int]]]:
self._validate_input(images, videos) self._validate_input(images, videos)
num_images = len(images) num_images = len(images)
image_seqlen = num_images * getattr(processor, "image_seqlen") image_seqlen = num_images * getattr(processor, "image_seqlen") if self.expand_mm_tokens else 0 # skip mm token
image_token_id = tokenizer.convert_tokens_to_ids(self.image_token) image_token_id = tokenizer.convert_tokens_to_ids(self.image_token)
input_ids = [image_token_id] * image_seqlen + input_ids input_ids = [image_token_id] * image_seqlen + input_ids
if labels is not None: if labels is not None:
@ -493,14 +499,18 @@ class PixtralPlugin(BasePlugin):
if image_input_sizes is None: if image_input_sizes is None:
raise ValueError("Cannot get image input sizes.") raise ValueError("Cannot get image input sizes.")
image_size = image_input_sizes[0][num_image_tokens] if self.expand_mm_tokens:
height, width = image_size image_size = image_input_sizes[0][num_image_tokens]
num_height_tokens = height // patch_size height, width = image_size
num_width_tokens = width // patch_size num_height_tokens = height // patch_size
replace_tokens = [[image_token] * num_width_tokens + [image_break_token]] * num_height_tokens num_width_tokens = width // patch_size
replace_tokens = [item for sublist in replace_tokens for item in sublist] # flatten list replace_tokens = [[image_token] * num_width_tokens + [image_break_token]] * num_height_tokens
replace_tokens[-1] = image_end_token replace_tokens = [item for sublist in replace_tokens for item in sublist] # flatten list
replace_str = "".join(replace_tokens) replace_tokens[-1] = image_end_token
replace_str = "".join(replace_tokens)
else:
replace_str = image_token
content = content.replace(IMAGE_PLACEHOLDER, replace_str, 1) content = content.replace(IMAGE_PLACEHOLDER, replace_str, 1)
num_image_tokens += 1 num_image_tokens += 1
@ -549,10 +559,27 @@ class Qwen2vlPlugin(BasePlugin):
return image return image
@override @override
def _get_video_sample_frames(self, video_stream: "Stream", **kwargs) -> int: def _regularize_videos(self, videos: Sequence["VideoInput"], **kwargs) -> List[List["ImageObject"]]:
sample_frames = super()._get_video_sample_frames(video_stream, **kwargs) results = []
sample_frames = sample_frames // 2 * 2 for video in videos:
return sample_frames container = av.open(video, "r")
video_stream = next(stream for stream in container.streams if stream.type == "video")
total_frames = video_stream.frames
sample_frames = self._get_video_sample_frames(video_stream, **kwargs)
sample_indices = np.linspace(0, total_frames - 1, sample_frames).astype(np.int32)
frames: List["ImageObject"] = []
container.seek(0)
for frame_idx, frame in enumerate(container.decode(video_stream)):
if frame_idx in sample_indices:
frames.append(frame.to_image())
if len(frames) % 2 != 0: # qwen2-vl requires even number of frames
frames.append(frames[-1])
frames = self._regularize_images(frames, **kwargs)
results.append(frames)
return results
@override @override
def process_messages( def process_messages(
@ -577,12 +604,9 @@ class Qwen2vlPlugin(BasePlugin):
if num_image_tokens >= len(image_grid_thw): if num_image_tokens >= len(image_grid_thw):
raise ValueError(f"`len(images)` is less than the number of {IMAGE_PLACEHOLDER} tokens.") raise ValueError(f"`len(images)` is less than the number of {IMAGE_PLACEHOLDER} tokens.")
image_seqlen = image_grid_thw[num_image_tokens].prod() // merge_length if self.expand_mm_tokens else 1
content = content.replace( content = content.replace(
IMAGE_PLACEHOLDER, IMAGE_PLACEHOLDER, f"<|vision_start|>{self.image_token * image_seqlen}<|vision_end|>", 1
"<|vision_start|>{}<|vision_end|>".format(
self.image_token * (image_grid_thw[num_image_tokens].prod() // merge_length)
),
1,
) )
num_image_tokens += 1 num_image_tokens += 1
@ -590,12 +614,9 @@ class Qwen2vlPlugin(BasePlugin):
if num_video_tokens >= len(video_grid_thw): if num_video_tokens >= len(video_grid_thw):
raise ValueError(f"`len(videos)` is less than the number of {VIDEO_PLACEHOLDER} tokens.") raise ValueError(f"`len(videos)` is less than the number of {VIDEO_PLACEHOLDER} tokens.")
video_seqlen = video_grid_thw[num_video_tokens].prod() // merge_length if self.expand_mm_tokens else 1
content = content.replace( content = content.replace(
VIDEO_PLACEHOLDER, VIDEO_PLACEHOLDER, f"<|vision_start|>{self.video_token * video_seqlen}<|vision_end|>", 1
"<|vision_start|>{}<|vision_end|>".format(
self.video_token * (video_grid_thw[num_video_tokens].prod() // merge_length)
),
1,
) )
num_video_tokens += 1 num_video_tokens += 1
@ -640,19 +661,22 @@ class VideoLlavaPlugin(BasePlugin):
has_images = "pixel_values_images" in mm_inputs has_images = "pixel_values_images" in mm_inputs
has_videos = "pixel_values_videos" in mm_inputs has_videos = "pixel_values_videos" in mm_inputs
if has_images or has_videos: if has_images or has_videos:
if has_images: if self.expand_mm_tokens:
height, width = get_image_size(to_numpy_array(mm_inputs.get("pixel_values_images")[0])) if has_images:
num_frames = 1 height, width = get_image_size(to_numpy_array(mm_inputs.get("pixel_values_images")[0]))
num_frames = 1
if has_videos: if has_videos:
pixel_values_video = to_numpy_array(mm_inputs.get("pixel_values_videos")[0]) pixel_values_video = to_numpy_array(mm_inputs.get("pixel_values_videos")[0])
height, width = get_image_size(pixel_values_video[0]) height, width = get_image_size(pixel_values_video[0])
num_frames = pixel_values_video.shape[0] # frame dim is always after batch dim num_frames = pixel_values_video.shape[0] # frame dim is always after batch dim
image_seqlen = (height // processor.patch_size) * (width // processor.patch_size) + 1 image_seqlen = (height // processor.patch_size) * (width // processor.patch_size) + 1
video_seqlen = image_seqlen * num_frames video_seqlen = image_seqlen * num_frames
if getattr(processor, "vision_feature_select_strategy") == "default": if getattr(processor, "vision_feature_select_strategy") == "default":
image_seqlen -= 1 image_seqlen -= 1
else:
image_seqlen, video_seqlen = 1, 1
for message in messages: for message in messages:
content = message["content"] content = message["content"]