[ci] disable pip cache for ci (#9654)

This commit is contained in:
Yaowei Zheng
2025-12-23 18:37:40 +08:00
committed by GitHub
parent 1c8a42d2f8
commit 84485406b7
5 changed files with 19 additions and 13 deletions

View File

@@ -67,8 +67,6 @@ jobs:
uses: actions/setup-python@v5 uses: actions/setup-python@v5
with: with:
python-version: ${{ matrix.python }} python-version: ${{ matrix.python }}
cache: "pip"
cache-dependency-path: "**/requirements*.txt"
- name: Install dependencies - name: Install dependencies
run: | run: |

View File

@@ -114,6 +114,7 @@ class AttentionFunction(str, Enum):
DISABLED = "disabled" DISABLED = "disabled"
SDPA = "sdpa" SDPA = "sdpa"
FA2 = "fa2" FA2 = "fa2"
FA3 = "fa3"
class EngineName(str, Enum): class EngineName(str, Enum):

View File

@@ -29,16 +29,19 @@ logger = logging.get_logger(__name__)
def configure_attn_implementation(config: "PretrainedConfig", model_args: "ModelArguments") -> None: def configure_attn_implementation(config: "PretrainedConfig", model_args: "ModelArguments") -> None:
from transformers.utils import is_flash_attn_2_available
if getattr(config, "model_type", None) == "gpt_oss": if getattr(config, "model_type", None) == "gpt_oss":
from transformers.integrations.hub_kernels import load_and_register_kernel from transformers.integrations.hub_kernels import load_and_register_kernel
flash_attn3_kernel = "kernels-community/vllm-flash-attn3" flash_attn3_kernel = "kernels-community/vllm-flash-attn3"
load_and_register_kernel(flash_attn3_kernel) load_and_register_kernel(flash_attn3_kernel)
setattr(config, "_attn_implementation", flash_attn3_kernel) setattr(config, "_attn_implementation", flash_attn3_kernel)
setattr(config, "_attn_implementation_internal", flash_attn3_kernel) setattr(config, "_attn_implementation_internal", flash_attn3_kernel)
model_args.flash_attn = flash_attn3_kernel model_args.flash_attn = AttentionFunction.FA3
logger.info_rank0("Using FlashAttention-3 with attention sink for the gpt-oss model.")
return return
from transformers.utils import is_flash_attn_2_available
if getattr(config, "model_type", None) == "gemma2": if getattr(config, "model_type", None) == "gemma2":
if model_args.flash_attn == AttentionFunction.AUTO or model_args.flash_attn == AttentionFunction.FA2: if model_args.flash_attn == AttentionFunction.AUTO or model_args.flash_attn == AttentionFunction.FA2:

View File

@@ -78,8 +78,11 @@ def apply_liger_kernel(
elif model_type == "qwen3_moe": elif model_type == "qwen3_moe":
from liger_kernel.transformers import apply_liger_kernel_to_qwen3_moe as apply_liger_kernel from liger_kernel.transformers import apply_liger_kernel_to_qwen3_moe as apply_liger_kernel
elif model_type == "gpt_oss": elif model_type == "gpt_oss":
# Install manually from https://github.com/Comet0322/Liger-Kernel try:
from liger_kernel.transformers import apply_liger_kernel_to_gpt_oss as apply_liger_kernel from liger_kernel.transformers import apply_liger_kernel_to_gpt_oss as apply_liger_kernel
except ImportError:
logger.warning_rank0("Please install liger-kernel from https://github.com/Comet0322/Liger-Kernel.")
return
else: else:
logger.warning_rank0("Current model does not support liger kernel.") logger.warning_rank0("Current model does not support liger kernel.")
return return

View File

@@ -82,6 +82,11 @@ def add_z3_leaf_module(model: "PreTrainedModel") -> None:
_set_z3_leaf_modules(model, [Glm4vMoeTextMoE]) _set_z3_leaf_modules(model, [Glm4vMoeTextMoE])
if model_type == "gpt_oss":
from transformers.models.gpt_oss.modeling_gpt_oss import GptOssMLP
_set_z3_leaf_modules(model, [GptOssMLP])
if model_type == "jamba": if model_type == "jamba":
from transformers.models.jamba.modeling_jamba import JambaSparseMoeBlock from transformers.models.jamba.modeling_jamba import JambaSparseMoeBlock
@@ -129,13 +134,9 @@ def add_z3_leaf_module(model: "PreTrainedModel") -> None:
if model_type in ("qwen3_omni_moe", "qwen3_omni_moe_thinker"): if model_type in ("qwen3_omni_moe", "qwen3_omni_moe_thinker"):
from transformers.models.qwen3_omni_moe.modeling_qwen3_omni_moe import Qwen3OmniMoeThinkerTextSparseMoeBlock from transformers.models.qwen3_omni_moe.modeling_qwen3_omni_moe import Qwen3OmniMoeThinkerTextSparseMoeBlock
_set_z3_leaf_modules(model, [Qwen3OmniMoeThinkerTextSparseMoeBlock]) _set_z3_leaf_modules(model, [Qwen3OmniMoeThinkerTextSparseMoeBlock])
if model_type == "gpt_oss":
from transformers.models.gpt_oss.modeling_gpt_oss import GptOssMLP
_set_z3_leaf_modules(model, [GptOssMLP])
def configure_moe(config: "PretrainedConfig", model_args: "ModelArguments", is_trainable: bool) -> None: def configure_moe(config: "PretrainedConfig", model_args: "ModelArguments", is_trainable: bool) -> None:
if not is_trainable or not model_args.moe_aux_loss_coef: if not is_trainable or not model_args.moe_aux_loss_coef: