mirror of
https://github.com/hiyouga/LLaMA-Factory.git
synced 2025-12-24 15:50:35 +08:00
[ci] disable pip cache for ci (#9654)
This commit is contained in:
2
.github/workflows/tests.yml
vendored
2
.github/workflows/tests.yml
vendored
@@ -67,8 +67,6 @@ jobs:
|
|||||||
uses: actions/setup-python@v5
|
uses: actions/setup-python@v5
|
||||||
with:
|
with:
|
||||||
python-version: ${{ matrix.python }}
|
python-version: ${{ matrix.python }}
|
||||||
cache: "pip"
|
|
||||||
cache-dependency-path: "**/requirements*.txt"
|
|
||||||
|
|
||||||
- name: Install dependencies
|
- name: Install dependencies
|
||||||
run: |
|
run: |
|
||||||
|
|||||||
@@ -114,6 +114,7 @@ class AttentionFunction(str, Enum):
|
|||||||
DISABLED = "disabled"
|
DISABLED = "disabled"
|
||||||
SDPA = "sdpa"
|
SDPA = "sdpa"
|
||||||
FA2 = "fa2"
|
FA2 = "fa2"
|
||||||
|
FA3 = "fa3"
|
||||||
|
|
||||||
|
|
||||||
class EngineName(str, Enum):
|
class EngineName(str, Enum):
|
||||||
|
|||||||
@@ -29,16 +29,19 @@ logger = logging.get_logger(__name__)
|
|||||||
|
|
||||||
|
|
||||||
def configure_attn_implementation(config: "PretrainedConfig", model_args: "ModelArguments") -> None:
|
def configure_attn_implementation(config: "PretrainedConfig", model_args: "ModelArguments") -> None:
|
||||||
|
from transformers.utils import is_flash_attn_2_available
|
||||||
|
|
||||||
if getattr(config, "model_type", None) == "gpt_oss":
|
if getattr(config, "model_type", None) == "gpt_oss":
|
||||||
from transformers.integrations.hub_kernels import load_and_register_kernel
|
from transformers.integrations.hub_kernels import load_and_register_kernel
|
||||||
|
|
||||||
flash_attn3_kernel = "kernels-community/vllm-flash-attn3"
|
flash_attn3_kernel = "kernels-community/vllm-flash-attn3"
|
||||||
load_and_register_kernel(flash_attn3_kernel)
|
load_and_register_kernel(flash_attn3_kernel)
|
||||||
setattr(config, "_attn_implementation", flash_attn3_kernel)
|
setattr(config, "_attn_implementation", flash_attn3_kernel)
|
||||||
setattr(config, "_attn_implementation_internal", flash_attn3_kernel)
|
setattr(config, "_attn_implementation_internal", flash_attn3_kernel)
|
||||||
model_args.flash_attn = flash_attn3_kernel
|
model_args.flash_attn = AttentionFunction.FA3
|
||||||
|
|
||||||
|
logger.info_rank0("Using FlashAttention-3 with attention sink for the gpt-oss model.")
|
||||||
return
|
return
|
||||||
|
|
||||||
from transformers.utils import is_flash_attn_2_available
|
|
||||||
|
|
||||||
if getattr(config, "model_type", None) == "gemma2":
|
if getattr(config, "model_type", None) == "gemma2":
|
||||||
if model_args.flash_attn == AttentionFunction.AUTO or model_args.flash_attn == AttentionFunction.FA2:
|
if model_args.flash_attn == AttentionFunction.AUTO or model_args.flash_attn == AttentionFunction.FA2:
|
||||||
|
|||||||
@@ -78,8 +78,11 @@ def apply_liger_kernel(
|
|||||||
elif model_type == "qwen3_moe":
|
elif model_type == "qwen3_moe":
|
||||||
from liger_kernel.transformers import apply_liger_kernel_to_qwen3_moe as apply_liger_kernel
|
from liger_kernel.transformers import apply_liger_kernel_to_qwen3_moe as apply_liger_kernel
|
||||||
elif model_type == "gpt_oss":
|
elif model_type == "gpt_oss":
|
||||||
# Install manually from https://github.com/Comet0322/Liger-Kernel
|
try:
|
||||||
from liger_kernel.transformers import apply_liger_kernel_to_gpt_oss as apply_liger_kernel
|
from liger_kernel.transformers import apply_liger_kernel_to_gpt_oss as apply_liger_kernel
|
||||||
|
except ImportError:
|
||||||
|
logger.warning_rank0("Please install liger-kernel from https://github.com/Comet0322/Liger-Kernel.")
|
||||||
|
return
|
||||||
else:
|
else:
|
||||||
logger.warning_rank0("Current model does not support liger kernel.")
|
logger.warning_rank0("Current model does not support liger kernel.")
|
||||||
return
|
return
|
||||||
|
|||||||
@@ -82,6 +82,11 @@ def add_z3_leaf_module(model: "PreTrainedModel") -> None:
|
|||||||
|
|
||||||
_set_z3_leaf_modules(model, [Glm4vMoeTextMoE])
|
_set_z3_leaf_modules(model, [Glm4vMoeTextMoE])
|
||||||
|
|
||||||
|
if model_type == "gpt_oss":
|
||||||
|
from transformers.models.gpt_oss.modeling_gpt_oss import GptOssMLP
|
||||||
|
|
||||||
|
_set_z3_leaf_modules(model, [GptOssMLP])
|
||||||
|
|
||||||
if model_type == "jamba":
|
if model_type == "jamba":
|
||||||
from transformers.models.jamba.modeling_jamba import JambaSparseMoeBlock
|
from transformers.models.jamba.modeling_jamba import JambaSparseMoeBlock
|
||||||
|
|
||||||
@@ -129,13 +134,9 @@ def add_z3_leaf_module(model: "PreTrainedModel") -> None:
|
|||||||
|
|
||||||
if model_type in ("qwen3_omni_moe", "qwen3_omni_moe_thinker"):
|
if model_type in ("qwen3_omni_moe", "qwen3_omni_moe_thinker"):
|
||||||
from transformers.models.qwen3_omni_moe.modeling_qwen3_omni_moe import Qwen3OmniMoeThinkerTextSparseMoeBlock
|
from transformers.models.qwen3_omni_moe.modeling_qwen3_omni_moe import Qwen3OmniMoeThinkerTextSparseMoeBlock
|
||||||
|
|
||||||
_set_z3_leaf_modules(model, [Qwen3OmniMoeThinkerTextSparseMoeBlock])
|
_set_z3_leaf_modules(model, [Qwen3OmniMoeThinkerTextSparseMoeBlock])
|
||||||
|
|
||||||
if model_type == "gpt_oss":
|
|
||||||
from transformers.models.gpt_oss.modeling_gpt_oss import GptOssMLP
|
|
||||||
|
|
||||||
_set_z3_leaf_modules(model, [GptOssMLP])
|
|
||||||
|
|
||||||
def configure_moe(config: "PretrainedConfig", model_args: "ModelArguments", is_trainable: bool) -> None:
|
def configure_moe(config: "PretrainedConfig", model_args: "ModelArguments", is_trainable: bool) -> None:
|
||||||
if not is_trainable or not model_args.moe_aux_loss_coef:
|
if not is_trainable or not model_args.moe_aux_loss_coef:
|
||||||
|
|||||||
Reference in New Issue
Block a user