mirror of
https://github.com/hiyouga/LLaMA-Factory.git
synced 2025-12-16 20:00:36 +08:00
merge model part to the text stream
This commit is contained in:
@@ -1,11 +1,11 @@
|
||||
from typing import TYPE_CHECKING, Any, Dict
|
||||
from typing import TYPE_CHECKING, Any, Dict, Union
|
||||
|
||||
from transformers import AutoConfig, AutoModelForCausalLM, AutoTokenizer, AutoProcessor, AutoModelForVision2Seq
|
||||
from trl import AutoModelForCausalLMWithValueHead
|
||||
|
||||
from ..extras.logging import get_logger
|
||||
from ..extras.misc import count_parameters, try_download_model_from_ms
|
||||
from .adapter import init_adapter, init_mm_adapter
|
||||
from .adapter import init_adapter
|
||||
from .patcher import patch_config, patch_model, patch_tokenizer, patch_valuehead_model
|
||||
from .utils.misc import load_valuehead_params, register_autoclass
|
||||
from .utils.mod import convert_pretrained_model_to_mod, load_mod_pretrained_model
|
||||
@@ -106,12 +106,12 @@ def load_config(model_args: "ModelArguments") -> "PretrainedConfig":
|
||||
|
||||
|
||||
def load_model(
|
||||
tokenizer: "PreTrainedTokenizer",
|
||||
model_args: "ModelArguments",
|
||||
finetuning_args: "FinetuningArguments",
|
||||
is_trainable: bool = False,
|
||||
add_valuehead: bool = False,
|
||||
) -> "PreTrainedModel":
|
||||
tokenizer: "PreTrainedTokenizer",
|
||||
model_args: "ModelArguments",
|
||||
finetuning_args: "FinetuningArguments",
|
||||
is_trainable: bool = False,
|
||||
add_valuehead: bool = False,
|
||||
) -> Union["PreTrainedModel", "AutoModelForVision2Seq"]:
|
||||
r"""
|
||||
Loads pretrained model.
|
||||
"""
|
||||
@@ -134,7 +134,10 @@ def load_model(
|
||||
if model_args.mixture_of_depths == "load":
|
||||
model = load_mod_pretrained_model(**init_kwargs)
|
||||
else:
|
||||
model = AutoModelForCausalLM.from_pretrained(**init_kwargs)
|
||||
if model_args.use_mllm:
|
||||
model = AutoModelForVision2Seq.from_pretrained(**init_kwargs)
|
||||
else:
|
||||
model = AutoModelForCausalLM.from_pretrained(**init_kwargs)
|
||||
|
||||
if model_args.mixture_of_depths == "convert":
|
||||
model = convert_pretrained_model_to_mod(model, config, model_args)
|
||||
@@ -182,56 +185,4 @@ def load_model(
|
||||
)
|
||||
)
|
||||
|
||||
return model
|
||||
|
||||
|
||||
def load_mm_model(
|
||||
processor: "AutoProcessor",
|
||||
model_args: "ModelArguments",
|
||||
finetuning_args: "FinetuningArguments",
|
||||
is_trainable: bool = False,
|
||||
add_valuehead: bool = False,
|
||||
use_clm=True,
|
||||
) -> "AutoModelForVision2Seq":
|
||||
r"""
|
||||
Loads pretrained model. Must after load_tokenizer.
|
||||
"""
|
||||
tokenizer = processor.tokenizer
|
||||
init_kwargs = _get_init_kwargs(model_args)
|
||||
config = AutoConfig.from_pretrained(model_args.model_name_or_path, **init_kwargs)
|
||||
patch_config(config, tokenizer, model_args, init_kwargs, is_trainable)
|
||||
|
||||
model = None
|
||||
if model is None:
|
||||
init_kwargs["config"] = config
|
||||
init_kwargs["pretrained_model_name_or_path"] = model_args.model_name_or_path
|
||||
model: "AutoModelForVision2Seq" = AutoModelForVision2Seq.from_pretrained(**init_kwargs)
|
||||
patch_model(model, tokenizer, model_args, is_trainable)
|
||||
register_autoclass(config, model, tokenizer)
|
||||
|
||||
model = init_mm_adapter(model, model_args, finetuning_args, is_trainable, use_clm)
|
||||
|
||||
if not is_trainable:
|
||||
model.requires_grad_(False)
|
||||
model.eval()
|
||||
else:
|
||||
model.train()
|
||||
|
||||
trainable_params, all_param = count_parameters(model)
|
||||
if is_trainable:
|
||||
param_stats = "trainable params: {:d} || all params: {:d} || trainable%: {:.4f}".format(
|
||||
trainable_params, all_param, 100 * trainable_params / all_param
|
||||
)
|
||||
else:
|
||||
param_stats = "all params: {:d}".format(all_param)
|
||||
logger.info(param_stats)
|
||||
|
||||
if model_args.print_param_status:
|
||||
for name, param in model.named_parameters():
|
||||
print(
|
||||
"name: {}, dtype: {}, device: {}, trainable: {}".format(
|
||||
name, param.dtype, param.device, param.requires_grad
|
||||
)
|
||||
)
|
||||
|
||||
return model
|
||||
return model
|
||||
Reference in New Issue
Block a user