merge model part to the text stream

This commit is contained in:
BUAADreamer
2024-04-25 08:20:41 +08:00
parent 8239907f57
commit 838eb87a96
5 changed files with 24 additions and 172 deletions

View File

@@ -1,11 +1,11 @@
from typing import TYPE_CHECKING, Any, Dict
from typing import TYPE_CHECKING, Any, Dict, Union
from transformers import AutoConfig, AutoModelForCausalLM, AutoTokenizer, AutoProcessor, AutoModelForVision2Seq
from trl import AutoModelForCausalLMWithValueHead
from ..extras.logging import get_logger
from ..extras.misc import count_parameters, try_download_model_from_ms
from .adapter import init_adapter, init_mm_adapter
from .adapter import init_adapter
from .patcher import patch_config, patch_model, patch_tokenizer, patch_valuehead_model
from .utils.misc import load_valuehead_params, register_autoclass
from .utils.mod import convert_pretrained_model_to_mod, load_mod_pretrained_model
@@ -106,12 +106,12 @@ def load_config(model_args: "ModelArguments") -> "PretrainedConfig":
def load_model(
tokenizer: "PreTrainedTokenizer",
model_args: "ModelArguments",
finetuning_args: "FinetuningArguments",
is_trainable: bool = False,
add_valuehead: bool = False,
) -> "PreTrainedModel":
tokenizer: "PreTrainedTokenizer",
model_args: "ModelArguments",
finetuning_args: "FinetuningArguments",
is_trainable: bool = False,
add_valuehead: bool = False,
) -> Union["PreTrainedModel", "AutoModelForVision2Seq"]:
r"""
Loads pretrained model.
"""
@@ -134,7 +134,10 @@ def load_model(
if model_args.mixture_of_depths == "load":
model = load_mod_pretrained_model(**init_kwargs)
else:
model = AutoModelForCausalLM.from_pretrained(**init_kwargs)
if model_args.use_mllm:
model = AutoModelForVision2Seq.from_pretrained(**init_kwargs)
else:
model = AutoModelForCausalLM.from_pretrained(**init_kwargs)
if model_args.mixture_of_depths == "convert":
model = convert_pretrained_model_to_mod(model, config, model_args)
@@ -182,56 +185,4 @@ def load_model(
)
)
return model
def load_mm_model(
processor: "AutoProcessor",
model_args: "ModelArguments",
finetuning_args: "FinetuningArguments",
is_trainable: bool = False,
add_valuehead: bool = False,
use_clm=True,
) -> "AutoModelForVision2Seq":
r"""
Loads pretrained model. Must after load_tokenizer.
"""
tokenizer = processor.tokenizer
init_kwargs = _get_init_kwargs(model_args)
config = AutoConfig.from_pretrained(model_args.model_name_or_path, **init_kwargs)
patch_config(config, tokenizer, model_args, init_kwargs, is_trainable)
model = None
if model is None:
init_kwargs["config"] = config
init_kwargs["pretrained_model_name_or_path"] = model_args.model_name_or_path
model: "AutoModelForVision2Seq" = AutoModelForVision2Seq.from_pretrained(**init_kwargs)
patch_model(model, tokenizer, model_args, is_trainable)
register_autoclass(config, model, tokenizer)
model = init_mm_adapter(model, model_args, finetuning_args, is_trainable, use_clm)
if not is_trainable:
model.requires_grad_(False)
model.eval()
else:
model.train()
trainable_params, all_param = count_parameters(model)
if is_trainable:
param_stats = "trainable params: {:d} || all params: {:d} || trainable%: {:.4f}".format(
trainable_params, all_param, 100 * trainable_params / all_param
)
else:
param_stats = "all params: {:d}".format(all_param)
logger.info(param_stats)
if model_args.print_param_status:
for name, param in model.named_parameters():
print(
"name: {}, dtype: {}, device: {}, trainable: {}".format(
name, param.dtype, param.device, param.requires_grad
)
)
return model
return model