refactor pissa, improve llamaboard

Former-commit-id: 8baf3b22b0
This commit is contained in:
hiyouga
2024-06-28 01:04:24 +08:00
parent 1dad756cff
commit 835f0578c2
16 changed files with 219 additions and 216 deletions

View File

@@ -0,0 +1,352 @@
# Copyright 2024 HuggingFace Inc. and the LlamaFactory team.
#
# This code is inspired by the HuggingFace's transformers library.
# https://github.com/huggingface/transformers/blob/v4.40.0/src/transformers/trainer.py
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import json
import logging
import os
import signal
import sys
import time
from concurrent.futures import ThreadPoolExecutor
from datetime import timedelta
from typing import TYPE_CHECKING, Any, Dict, Optional
import torch
import transformers
from peft import PeftModel
from transformers import PreTrainedModel, ProcessorMixin, TrainerCallback
from transformers.trainer_utils import PREFIX_CHECKPOINT_DIR, has_length
from transformers.utils import (
SAFE_WEIGHTS_NAME,
WEIGHTS_NAME,
is_safetensors_available,
)
from ..extras.constants import TRAINER_LOG, V_HEAD_SAFE_WEIGHTS_NAME, V_HEAD_WEIGHTS_NAME
from ..extras.logging import LoggerHandler, get_logger
if is_safetensors_available():
from safetensors import safe_open
from safetensors.torch import save_file
if TYPE_CHECKING:
from transformers import TrainerControl, TrainerState, TrainingArguments
from trl import AutoModelForCausalLMWithValueHead
logger = get_logger(__name__)
def fix_valuehead_checkpoint(
model: "AutoModelForCausalLMWithValueHead", output_dir: str, safe_serialization: bool
) -> None:
r"""
The model is already unwrapped.
There are three cases:
1. full tuning without ds_zero3: state_dict = {"model.layers.*": ..., "v_head.summary.*": ...}
2. lora tuning without ds_zero3: state_dict = {"v_head.summary.*": ...}
3. under deepspeed zero3: state_dict = {"pretrained_model.model.layers.*": ..., "v_head.summary.*": ...}
We assume `stage3_gather_16bit_weights_on_model_save=true`.
"""
if not isinstance(model.pretrained_model, (PreTrainedModel, PeftModel)):
return
if safe_serialization:
path_to_checkpoint = os.path.join(output_dir, SAFE_WEIGHTS_NAME)
with safe_open(path_to_checkpoint, framework="pt", device="cpu") as f:
state_dict: Dict[str, torch.Tensor] = {key: f.get_tensor(key) for key in f.keys()}
else:
path_to_checkpoint = os.path.join(output_dir, WEIGHTS_NAME)
state_dict: Dict[str, torch.Tensor] = torch.load(path_to_checkpoint, map_location="cpu")
decoder_state_dict = {}
v_head_state_dict = {}
for name, param in state_dict.items():
if name.startswith("v_head."):
v_head_state_dict[name] = param
else:
decoder_state_dict[name.replace("pretrained_model.", "")] = param
os.remove(path_to_checkpoint)
model.pretrained_model.save_pretrained(
output_dir, state_dict=decoder_state_dict or None, safe_serialization=safe_serialization
)
if safe_serialization:
save_file(v_head_state_dict, os.path.join(output_dir, V_HEAD_SAFE_WEIGHTS_NAME), metadata={"format": "pt"})
else:
torch.save(v_head_state_dict, os.path.join(output_dir, V_HEAD_WEIGHTS_NAME))
logger.info("Value head model saved at: {}".format(output_dir))
class FixValueHeadModelCallback(TrainerCallback):
def on_save(self, args: "TrainingArguments", state: "TrainerState", control: "TrainerControl", **kwargs):
r"""
Event called after a checkpoint save.
"""
if args.should_save:
fix_valuehead_checkpoint(
model=kwargs.pop("model"),
output_dir=os.path.join(args.output_dir, "{}-{}".format(PREFIX_CHECKPOINT_DIR, state.global_step)),
safe_serialization=args.save_safetensors,
)
class SaveProcessorCallback(TrainerCallback):
def __init__(self, processor: "ProcessorMixin") -> None:
r"""
Initializes a callback for saving the processor.
"""
self.processor = processor
def on_train_end(self, args: "TrainingArguments", state: "TrainerState", control: "TrainerControl", **kwargs):
r"""
Event called at the end of training.
"""
if args.should_save:
getattr(self.processor, "image_processor").save_pretrained(args.output_dir)
class PissaConvertCallback(TrainerCallback):
r"""
Initializes a callback for converting the PiSSA adapter to a normal one.
"""
def on_train_begin(self, args: "TrainingArguments", state: "TrainerState", control: "TrainerControl", **kwargs):
r"""
Event called at the beginning of training.
"""
if args.should_save:
model = kwargs.pop("model")
pissa_init_dir = os.path.join(args.output_dir, "pissa_init")
logger.info("Initial PiSSA adatper will be saved at: {}.".format(pissa_init_dir))
if isinstance(model, PeftModel):
init_lora_weights = getattr(model.peft_config["default"], "init_lora_weights")
setattr(model.peft_config["default"], "init_lora_weights", True)
model.save_pretrained(pissa_init_dir, safe_serialization=args.save_safetensors)
setattr(model.peft_config["default"], "init_lora_weights", init_lora_weights)
def on_train_end(self, args: "TrainingArguments", state: "TrainerState", control: "TrainerControl", **kwargs):
r"""
Event called at the end of training.
"""
if args.should_save:
model = kwargs.pop("model")
pissa_init_dir = os.path.join(args.output_dir, "pissa_init")
pissa_backup_dir = os.path.join(args.output_dir, "pissa_backup")
pissa_convert_dir = os.path.join(args.output_dir, "pissa_converted")
logger.info("Converted PiSSA adapter will be saved at: {}.".format(pissa_convert_dir))
# 1. save a pissa backup with init_lora_weights: True
# 2. save a converted lora with init_lora_weights: pissa
# 3. load the pissa backup with init_lora_weights: True
# 4. delete the initial adapter and change init_lora_weights to pissa
if isinstance(model, PeftModel):
init_lora_weights = getattr(model.peft_config["default"], "init_lora_weights")
setattr(model.peft_config["default"], "init_lora_weights", True)
model.save_pretrained(pissa_backup_dir, safe_serialization=args.save_safetensors)
setattr(model.peft_config["default"], "init_lora_weights", init_lora_weights)
model.save_pretrained(
pissa_convert_dir, safe_serialization=args.save_safetensors, convert_pissa_to_lora=pissa_init_dir
)
model.load_adapter(pissa_backup_dir, "default", is_trainable=True)
model.set_adapter("default")
model.delete_adapter("pissa_init")
setattr(model.peft_config["default"], "init_lora_weights", init_lora_weights)
class LogCallback(TrainerCallback):
def __init__(self) -> None:
r"""
Initializes a callback for logging training and evaluation status.
"""
""" Progress """
self.start_time = 0
self.cur_steps = 0
self.max_steps = 0
self.elapsed_time = ""
self.remaining_time = ""
self.thread_pool: Optional["ThreadPoolExecutor"] = None
""" Status """
self.aborted = False
self.do_train = False
""" Web UI """
self.webui_mode = os.environ.get("LLAMABOARD_ENABLED", "0").lower() in ["true", "1"]
if self.webui_mode:
signal.signal(signal.SIGABRT, self._set_abort)
self.logger_handler = LoggerHandler(os.environ.get("LLAMABOARD_WORKDIR"))
logging.root.addHandler(self.logger_handler)
transformers.logging.add_handler(self.logger_handler)
def _set_abort(self, signum, frame) -> None:
self.aborted = True
def _reset(self, max_steps: int = 0) -> None:
self.start_time = time.time()
self.cur_steps = 0
self.max_steps = max_steps
self.elapsed_time = ""
self.remaining_time = ""
def _timing(self, cur_steps: int) -> None:
cur_time = time.time()
elapsed_time = cur_time - self.start_time
avg_time_per_step = elapsed_time / cur_steps if cur_steps != 0 else 0
remaining_time = (self.max_steps - cur_steps) * avg_time_per_step
self.cur_steps = cur_steps
self.elapsed_time = str(timedelta(seconds=int(elapsed_time)))
self.remaining_time = str(timedelta(seconds=int(remaining_time)))
def _write_log(self, output_dir: str, logs: Dict[str, Any]) -> None:
with open(os.path.join(output_dir, TRAINER_LOG), "a", encoding="utf-8") as f:
f.write(json.dumps(logs) + "\n")
def _create_thread_pool(self, output_dir: str) -> None:
os.makedirs(output_dir, exist_ok=True)
self.thread_pool = ThreadPoolExecutor(max_workers=1)
def _close_thread_pool(self) -> None:
if self.thread_pool is not None:
self.thread_pool.shutdown(wait=True)
self.thread_pool = None
def on_init_end(self, args: "TrainingArguments", state: "TrainerState", control: "TrainerControl", **kwargs):
r"""
Event called at the end of the initialization of the `Trainer`.
"""
if (
args.should_save
and os.path.exists(os.path.join(args.output_dir, TRAINER_LOG))
and args.overwrite_output_dir
):
logger.warning("Previous trainer log in this folder will be deleted.")
os.remove(os.path.join(args.output_dir, TRAINER_LOG))
def on_train_begin(self, args: "TrainingArguments", state: "TrainerState", control: "TrainerControl", **kwargs):
r"""
Event called at the beginning of training.
"""
if args.should_save:
self.do_train = True
self._reset(max_steps=state.max_steps)
self._create_thread_pool(output_dir=args.output_dir)
def on_train_end(self, args: "TrainingArguments", state: "TrainerState", control: "TrainerControl", **kwargs):
r"""
Event called at the end of training.
"""
self._close_thread_pool()
def on_substep_end(self, args: "TrainingArguments", state: "TrainerState", control: "TrainerControl", **kwargs):
r"""
Event called at the end of an substep during gradient accumulation.
"""
if self.aborted:
control.should_epoch_stop = True
control.should_training_stop = True
def on_step_end(self, args: "TrainingArguments", state: "TrainerState", control: "TrainerControl", **kwargs):
r"""
Event called at the end of a training step.
"""
if self.aborted:
control.should_epoch_stop = True
control.should_training_stop = True
def on_evaluate(self, args: "TrainingArguments", state: "TrainerState", control: "TrainerControl", **kwargs):
r"""
Event called after an evaluation phase.
"""
if not self.do_train:
self._close_thread_pool()
def on_predict(self, args: "TrainingArguments", state: "TrainerState", control: "TrainerControl", **kwargs):
r"""
Event called after a successful prediction.
"""
if not self.do_train:
self._close_thread_pool()
def on_log(self, args: "TrainingArguments", state: "TrainerState", control: "TrainerControl", **kwargs):
r"""
Event called after logging the last logs.
"""
if not args.should_save:
return
self._timing(cur_steps=state.global_step)
logs = dict(
current_steps=self.cur_steps,
total_steps=self.max_steps,
loss=state.log_history[-1].get("loss", None),
eval_loss=state.log_history[-1].get("eval_loss", None),
predict_loss=state.log_history[-1].get("predict_loss", None),
reward=state.log_history[-1].get("reward", None),
accuracy=state.log_history[-1].get("rewards/accuracies", None),
learning_rate=state.log_history[-1].get("learning_rate", None),
epoch=state.log_history[-1].get("epoch", None),
percentage=round(self.cur_steps / self.max_steps * 100, 2) if self.max_steps != 0 else 100,
elapsed_time=self.elapsed_time,
remaining_time=self.remaining_time,
throughput="{:.2f}".format(state.num_input_tokens_seen / (time.time() - self.start_time)),
total_tokens=state.num_input_tokens_seen,
)
logs = {k: v for k, v in logs.items() if v is not None}
if self.webui_mode and all(key in logs for key in ["loss", "learning_rate", "epoch"]):
logger.info(
"{{'loss': {:.4f}, 'learning_rate': {:2.4e}, 'epoch': {:.2f}, 'throughput': {}}}".format(
logs["loss"], logs["learning_rate"], logs["epoch"], logs["throughput"]
)
)
if self.thread_pool is not None:
self.thread_pool.submit(self._write_log, args.output_dir, logs)
def on_prediction_step(
self, args: "TrainingArguments", state: "TrainerState", control: "TrainerControl", **kwargs
):
r"""
Event called after a prediction step.
"""
if self.do_train:
return
if self.aborted:
sys.exit(0)
if not args.should_save:
return
eval_dataloader = kwargs.pop("eval_dataloader", None)
if has_length(eval_dataloader):
if self.max_steps == 0:
self._reset(max_steps=len(eval_dataloader))
self._create_thread_pool(output_dir=args.output_dir)
self._timing(cur_steps=self.cur_steps + 1)
if self.cur_steps % 5 == 0 and self.thread_pool is not None:
logs = dict(
current_steps=self.cur_steps,
total_steps=self.max_steps,
percentage=round(self.cur_steps / self.max_steps * 100, 2) if self.max_steps != 0 else 100,
elapsed_time=self.elapsed_time,
remaining_time=self.remaining_time,
)
self.thread_pool.submit(self._write_log, args.output_dir, logs)

View File

@@ -15,7 +15,6 @@
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import warnings
from collections import defaultdict
from contextlib import nullcontext
@@ -29,7 +28,8 @@ from trl import DPOTrainer
from trl.trainer import disable_dropout_in_model
from ...extras.constants import IGNORE_INDEX
from ..trainer_utils import convert_pissa_adapter, create_custom_optimzer, create_custom_scheduler, get_batch_logps
from ..callbacks import PissaConvertCallback, SaveProcessorCallback
from ..trainer_utils import create_custom_optimzer, create_custom_scheduler, get_batch_logps
if TYPE_CHECKING:
@@ -54,7 +54,6 @@ class CustomDPOTrainer(DPOTrainer):
disable_dropout_in_model(ref_model)
self.finetuning_args = finetuning_args
self.processor = processor
self.reference_free = False
self.use_dpo_data_collator = True # hack to avoid warning
self.generate_during_eval = False # disable at evaluation
@@ -92,14 +91,17 @@ class CustomDPOTrainer(DPOTrainer):
self.ref_model = self.accelerator.prepare_model(self.ref_model, evaluation_mode=True)
self.ref_model.eval()
if processor is not None:
self.add_callback(SaveProcessorCallback(processor))
if finetuning_args.pissa_convert:
self.save_model(os.path.join(self.args.output_dir, "pissa_init"))
self.callback_handler.add_callback(PissaConvertCallback)
if finetuning_args.use_badam:
from badam import BAdamCallback, clip_grad_norm_old_version
self.accelerator.clip_grad_norm_ = MethodType(clip_grad_norm_old_version, self.accelerator)
self.callback_handler.add_callback(BAdamCallback)
self.add_callback(BAdamCallback)
def create_optimizer(self) -> "torch.optim.Optimizer":
if self.optimizer is None:
@@ -112,15 +114,6 @@ class CustomDPOTrainer(DPOTrainer):
create_custom_scheduler(self.args, num_training_steps, optimizer)
return super().create_scheduler(num_training_steps, optimizer)
def _save(self, output_dir: Optional[str] = None, state_dict: Optional[Dict[str, "torch.Tensor"]] = None) -> None:
super()._save(output_dir, state_dict)
output_dir = output_dir if output_dir is not None else self.args.output_dir
if self.finetuning_args.pissa_convert:
convert_pissa_adapter(output_dir, state_dict, self.accelerator, self.model, self.args)
if self.processor is not None:
getattr(self.processor, "image_processor").save_pretrained(output_dir)
def odds_ratio_loss(self, chosen_logps: "torch.Tensor", rejected_logps: "torch.Tensor") -> "torch.Tensor":
r"""
Computes ORPO's odds ratio (OR) loss for batched log probabilities of the policy model.

View File

@@ -27,6 +27,7 @@ from trl import KTOTrainer
from trl.trainer import disable_dropout_in_model
from ...extras.constants import IGNORE_INDEX
from ..callbacks import SaveProcessorCallback
from ..trainer_utils import create_custom_optimzer, create_custom_scheduler, get_batch_logps
@@ -53,7 +54,6 @@ class CustomKTOTrainer(KTOTrainer):
disable_dropout_in_model(ref_model)
self.finetuning_args = finetuning_args
self.processor = processor
self.reference_free = False
self.use_dpo_data_collator = True # hack to avoid warning
self.generate_during_eval = False # disable at evaluation
@@ -90,11 +90,14 @@ class CustomKTOTrainer(KTOTrainer):
self.ref_model = self.accelerator.prepare_model(self.ref_model, evaluation_mode=True)
self.ref_model.eval()
if processor is not None:
self.add_callback(SaveProcessorCallback(processor))
if finetuning_args.use_badam:
from badam import BAdamCallback, clip_grad_norm_old_version
self.accelerator.clip_grad_norm_ = MethodType(clip_grad_norm_old_version, self.accelerator)
self.callback_handler.add_callback(BAdamCallback)
self.add_callback(BAdamCallback)
def create_optimizer(self) -> "torch.optim.Optimizer":
if self.optimizer is None:
@@ -113,12 +116,6 @@ class CustomKTOTrainer(KTOTrainer):
"""
return Trainer._get_train_sampler(self)
def _save(self, output_dir: Optional[str] = None, state_dict: Optional[Dict[str, "torch.Tensor"]] = None) -> None:
super()._save(output_dir, state_dict)
output_dir = output_dir if output_dir is not None else self.args.output_dir
if self.processor is not None:
getattr(self.processor, "image_processor").save_pretrained(output_dir)
def forward(
self, model: "PreTrainedModel", batch: Dict[str, "torch.Tensor"], prefix: Literal["", "kl_"] = ""
) -> Tuple["torch.Tensor", "torch.Tensor"]:

View File

@@ -27,6 +27,7 @@ from accelerate.utils import DistributedDataParallelKwargs
from tqdm import tqdm
from transformers import GenerationConfig, Trainer, TrainerControl, TrainerState
from transformers.optimization import get_scheduler
from transformers.trainer_callback import CallbackHandler
from transformers.trainer_pt_utils import remove_dummy_checkpoint
from transformers.trainer_utils import PREFIX_CHECKPOINT_DIR
from transformers.utils import SAFE_WEIGHTS_NAME, WEIGHTS_NAME
@@ -34,9 +35,9 @@ from trl import PPOConfig, PPOTrainer
from trl.core import PPODecorators, logprobs_from_logits
from trl.models.utils import unwrap_model_for_generation
from ...extras.callbacks import FixValueHeadModelCallback, LogCallback
from ...extras.logging import get_logger
from ...extras.misc import AverageMeter, count_parameters, get_current_device, get_logits_processor
from ..callbacks import FixValueHeadModelCallback, SaveProcessorCallback
from ..trainer_utils import create_custom_optimzer, create_custom_scheduler
from .ppo_utils import dump_layernorm, get_rewards_from_server, replace_model, restore_layernorm
@@ -131,7 +132,6 @@ class CustomPPOTrainer(PPOTrainer, Trainer):
self.finetuning_args = finetuning_args
self.reward_model = reward_model
self.current_device = get_current_device() # patch for deepspeed training
self.processor = processor
self.generation_config = GenerationConfig(
pad_token_id=self.tokenizer.pad_token_id,
@@ -143,8 +143,9 @@ class CustomPPOTrainer(PPOTrainer, Trainer):
self.control = TrainerControl()
self.is_deepspeed_enabled = getattr(self.accelerator.state, "deepspeed_plugin", None) is not None
self.is_fsdp_enabled = getattr(self.accelerator.state, "fsdp_plugin", None) is not None
self.log_callback, self.save_callback = callbacks[0], callbacks[1]
assert isinstance(self.log_callback, LogCallback) and isinstance(self.save_callback, FixValueHeadModelCallback)
self.callback_handler = CallbackHandler(
[callbacks], self.accelerator.unwrap_model(self.model), self.tokenizer, self.optimizer, self.lr_scheduler
)
if self.args.max_steps > 0:
logger.info("max_steps is given, it will override any value given in num_train_epochs")
@@ -165,11 +166,16 @@ class CustomPPOTrainer(PPOTrainer, Trainer):
else:
self.reward_model = self.accelerator.prepare_model(self.reward_model, evaluation_mode=True)
self.add_callback(FixValueHeadModelCallback)
if processor is not None:
self.add_callback(SaveProcessorCallback(processor))
if finetuning_args.use_badam:
from badam import BAdamCallback, clip_grad_norm_old_version
self.accelerator.clip_grad_norm_ = MethodType(clip_grad_norm_old_version, self.accelerator)
self.callback_handler.add_callback(BAdamCallback)
self.add_callback(BAdamCallback)
def ppo_train(self, resume_from_checkpoint: Optional[str] = None) -> None:
r"""
@@ -219,7 +225,7 @@ class CustomPPOTrainer(PPOTrainer, Trainer):
dataiter = iter(self.dataloader)
loss_meter = AverageMeter()
reward_meter = AverageMeter()
self.log_callback.on_train_begin(self.args, self.state, self.control)
self.callback_handler.on_train_begin(self.args, self.state, self.control)
for step in tqdm(range(max_steps), disable=not self.is_local_process_zero()):
try:
@@ -257,7 +263,7 @@ class CustomPPOTrainer(PPOTrainer, Trainer):
logger.warning("Failed to save stats due to unknown errors.")
self.state.global_step += 1
self.log_callback.on_step_end(self.args, self.state, self.control)
self.callback_handler.on_step_end(self.args, self.state, self.control)
if self.is_local_process_zero() and (step + 1) % self.args.logging_steps == 0:
logs = dict(
@@ -269,7 +275,7 @@ class CustomPPOTrainer(PPOTrainer, Trainer):
tqdm.write(str(logs))
logs["step"] = step
self.state.log_history.append(logs)
self.log_callback.on_log(self.args, self.state, self.control)
self.callback_handler.on_log(self.args, self.state, self.control, logs)
loss_meter.reset()
reward_meter.reset()
@@ -277,17 +283,12 @@ class CustomPPOTrainer(PPOTrainer, Trainer):
self.save_model(
os.path.join(self.args.output_dir, "{}-{}".format(PREFIX_CHECKPOINT_DIR, self.state.global_step))
)
self.save_callback.on_save(
self.args, self.state, self.control, model=self.accelerator.unwrap_model(self.model)
)
self.callback_handler.on_save(self.args, self.state, self.control)
if self.control.should_epoch_stop or self.control.should_training_stop:
break
self.log_callback.on_train_end(self.args, self.state, self.control)
self.save_callback.on_train_end(
self.args, self.state, self.control, model=self.accelerator.unwrap_model(self.model)
)
self.callback_handler.on_train_end(self.args, self.state, self.control)
def create_optimizer(
self,
@@ -505,7 +506,3 @@ class CustomPPOTrainer(PPOTrainer, Trainer):
elif self.args.should_save:
self._save(output_dir)
if self.processor is not None and self.args.should_save:
output_dir = output_dir if output_dir is not None else self.args.output_dir
getattr(self.processor, "image_processor").save_pretrained(output_dir)

View File

@@ -20,10 +20,9 @@ from typing import TYPE_CHECKING, List, Optional
from transformers import DataCollatorWithPadding
from ...data import get_dataset
from ...extras.callbacks import FixValueHeadModelCallback
from ...extras.misc import fix_valuehead_checkpoint
from ...extras.ploting import plot_loss
from ...model import load_model, load_tokenizer
from ..callbacks import FixValueHeadModelCallback, fix_valuehead_checkpoint
from ..trainer_utils import create_ref_model, create_reward_model
from .trainer import CustomPPOTrainer
@@ -75,6 +74,7 @@ def run_ppo(
ppo_trainer.save_model()
if training_args.should_save:
fix_valuehead_checkpoint(model, training_args.output_dir, training_args.save_safetensors)
ppo_trainer.save_state() # must be called after save_model to have a folder
if ppo_trainer.is_world_process_zero() and finetuning_args.plot_loss:
plot_loss(training_args.output_dir, keys=["loss", "reward"])

View File

@@ -12,14 +12,14 @@
# See the License for the specific language governing permissions and
# limitations under the License.
import os
from types import MethodType
from typing import TYPE_CHECKING, Dict, Optional
from typing import TYPE_CHECKING, Optional
from transformers import Trainer
from ...extras.logging import get_logger
from ..trainer_utils import convert_pissa_adapter, create_custom_optimzer, create_custom_scheduler
from ..callbacks import PissaConvertCallback, SaveProcessorCallback
from ..trainer_utils import create_custom_optimzer, create_custom_scheduler
if TYPE_CHECKING:
@@ -42,16 +42,18 @@ class CustomTrainer(Trainer):
) -> None:
super().__init__(**kwargs)
self.finetuning_args = finetuning_args
self.processor = processor
if processor is not None:
self.add_callback(SaveProcessorCallback(processor))
if finetuning_args.pissa_convert:
self.save_model(os.path.join(self.args.output_dir, "pissa_init"))
self.add_callback(PissaConvertCallback)
if finetuning_args.use_badam:
from badam import BAdamCallback, clip_grad_norm_old_version
self.accelerator.clip_grad_norm_ = MethodType(clip_grad_norm_old_version, self.accelerator)
self.callback_handler.add_callback(BAdamCallback)
self.add_callback(BAdamCallback)
def create_optimizer(self) -> "torch.optim.Optimizer":
if self.optimizer is None:
@@ -63,12 +65,3 @@ class CustomTrainer(Trainer):
) -> "torch.optim.lr_scheduler.LRScheduler":
create_custom_scheduler(self.args, num_training_steps, optimizer)
return super().create_scheduler(num_training_steps, optimizer)
def _save(self, output_dir: Optional[str] = None, state_dict: Optional[Dict[str, "torch.Tensor"]] = None) -> None:
super()._save(output_dir, state_dict)
output_dir = output_dir if output_dir is not None else self.args.output_dir
if self.finetuning_args.pissa_convert:
convert_pissa_adapter(output_dir, state_dict, self.accelerator, self.model, self.args)
if self.processor is not None:
getattr(self.processor, "image_processor").save_pretrained(output_dir)

View File

@@ -46,6 +46,7 @@ import torch
from transformers import Trainer
from ...extras.logging import get_logger
from ..callbacks import FixValueHeadModelCallback, PissaConvertCallback, SaveProcessorCallback
from ..trainer_utils import create_custom_optimzer, create_custom_scheduler
@@ -69,13 +70,20 @@ class PairwiseTrainer(Trainer):
) -> None:
super().__init__(**kwargs)
self.finetuning_args = finetuning_args
self.processor = processor
self.can_return_loss = True # override property to return eval_loss
self.add_callback(FixValueHeadModelCallback)
if processor is not None:
self.add_callback(SaveProcessorCallback(processor))
if finetuning_args.pissa_convert:
self.add_callback(PissaConvertCallback)
if finetuning_args.use_badam:
from badam import BAdamCallback, clip_grad_norm_old_version
self.accelerator.clip_grad_norm_ = MethodType(clip_grad_norm_old_version, self.accelerator)
self.callback_handler.add_callback(BAdamCallback)
self.add_callback(BAdamCallback)
def create_optimizer(self) -> "torch.optim.Optimizer":
if self.optimizer is None:
@@ -88,12 +96,6 @@ class PairwiseTrainer(Trainer):
create_custom_scheduler(self.args, num_training_steps, optimizer)
return super().create_scheduler(num_training_steps, optimizer)
def _save(self, output_dir: Optional[str] = None, state_dict: Optional[Dict[str, "torch.Tensor"]] = None) -> None:
super()._save(output_dir, state_dict)
output_dir = output_dir if output_dir is not None else self.args.output_dir
if self.processor is not None:
getattr(self.processor, "image_processor").save_pretrained(output_dir)
def compute_loss(
self, model: "PreTrainedModel", inputs: Dict[str, torch.Tensor], return_outputs: bool = False
) -> Union[torch.Tensor, Tuple[torch.Tensor, List[torch.Tensor]]]:
@@ -164,4 +166,5 @@ class PairwiseTrainer(Trainer):
res: List[str] = []
for c_score, r_score in zip(chosen_scores, rejected_scores):
res.append(json.dumps({"chosen": round(float(c_score), 2), "rejected": round(float(r_score), 2)}))
writer.write("\n".join(res))

View File

@@ -40,10 +40,9 @@
from typing import TYPE_CHECKING, List, Optional
from ...data import PairwiseDataCollatorWithPadding, get_dataset, split_dataset
from ...extras.callbacks import FixValueHeadModelCallback
from ...extras.misc import fix_valuehead_checkpoint
from ...extras.ploting import plot_loss
from ...model import load_model, load_tokenizer
from ..callbacks import fix_valuehead_checkpoint
from ..trainer_utils import create_modelcard_and_push
from .metric import compute_accuracy
from .trainer import PairwiseTrainer
@@ -77,7 +76,7 @@ def run_rm(
args=training_args,
finetuning_args=finetuning_args,
data_collator=data_collator,
callbacks=callbacks + [FixValueHeadModelCallback()],
callbacks=callbacks,
compute_metrics=compute_accuracy,
**tokenizer_module,
**split_dataset(dataset, data_args, training_args),
@@ -89,6 +88,7 @@ def run_rm(
trainer.save_model()
if training_args.should_save:
fix_valuehead_checkpoint(model, training_args.output_dir, training_args.save_safetensors)
trainer.log_metrics("train", train_result.metrics)
trainer.save_metrics("train", train_result.metrics)
trainer.save_state()

View File

@@ -26,7 +26,8 @@ from transformers import Seq2SeqTrainer
from ...extras.constants import IGNORE_INDEX
from ...extras.logging import get_logger
from ..trainer_utils import convert_pissa_adapter, create_custom_optimzer, create_custom_scheduler
from ..callbacks import PissaConvertCallback, SaveProcessorCallback
from ..trainer_utils import create_custom_optimzer, create_custom_scheduler
if TYPE_CHECKING:
@@ -50,19 +51,18 @@ class CustomSeq2SeqTrainer(Seq2SeqTrainer):
) -> None:
super().__init__(**kwargs)
self.finetuning_args = finetuning_args
self.processor = processor
if processor is not None:
self.add_callback(SaveProcessorCallback(processor))
if finetuning_args.pissa_convert:
if self.is_deepspeed_enabled:
self.accelerator.deepspeed_config = self.accelerator.state.deepspeed_plugin.deepspeed_config
self.deepspeed = self._wrap_model(self.model_wrapped)
self.save_model(os.path.join(self.args.output_dir, "pissa_init"))
self.add_callback(PissaConvertCallback)
if finetuning_args.use_badam:
from badam import BAdamCallback, clip_grad_norm_old_version
self.accelerator.clip_grad_norm_ = MethodType(clip_grad_norm_old_version, self.accelerator)
self.callback_handler.add_callback(BAdamCallback)
self.add_callback(BAdamCallback)
def create_optimizer(self) -> "torch.optim.Optimizer":
if self.optimizer is None:
@@ -75,15 +75,6 @@ class CustomSeq2SeqTrainer(Seq2SeqTrainer):
create_custom_scheduler(self.args, num_training_steps, optimizer)
return super().create_scheduler(num_training_steps, optimizer)
def _save(self, output_dir: Optional[str] = None, state_dict: Optional[Dict[str, "torch.Tensor"]] = None) -> None:
super()._save(output_dir, state_dict)
output_dir = output_dir if output_dir is not None else self.args.output_dir
if self.finetuning_args.pissa_convert:
convert_pissa_adapter(output_dir, state_dict, self.accelerator, self.model, self.args)
if self.processor is not None:
getattr(self.processor, "image_processor").save_pretrained(output_dir)
def prediction_step(
self,
model: "torch.nn.Module",

View File

@@ -17,11 +17,9 @@
# See the License for the specific language governing permissions and
# limitations under the License.
import os
from typing import TYPE_CHECKING, Callable, Dict, List, Optional, Tuple, Union
import torch
from peft import PeftModel
from transformers import Trainer
from transformers.integrations import is_deepspeed_zero3_enabled
from transformers.optimization import get_scheduler
@@ -40,7 +38,6 @@ if is_galore_available():
if TYPE_CHECKING:
from accelerate import Accelerator
from transformers import PreTrainedModel, Seq2SeqTrainingArguments
from trl import AutoModelForCausalLMWithValueHead
@@ -175,51 +172,6 @@ def create_reward_model(
return reward_model
def convert_pissa_adapter(
output_dir: str,
state_dict: Dict[str, "torch.Tensor"],
accelerator: "Accelerator",
model: "PreTrainedModel",
training_args: "Seq2SeqTrainingArguments",
) -> None:
r"""
Converts the PiSSA adapter to a LoRA adapter.
"""
pissa_init_dir = os.path.join(training_args.output_dir, "pissa_init")
pissa_backup_dir = os.path.join(output_dir, "pissa_backup")
if output_dir == pissa_init_dir:
logger.info("Initial PiSSA adatper will be saved at: {}.".format(pissa_init_dir))
unwrapped_model = accelerator.unwrap_model(model)
if isinstance(unwrapped_model, PeftModel):
init_lora_weights = getattr(unwrapped_model.peft_config["default"], "init_lora_weights")
setattr(unwrapped_model.peft_config["default"], "init_lora_weights", True)
unwrapped_model.save_pretrained(
output_dir,
state_dict=state_dict,
safe_serialization=training_args.save_safetensors,
)
setattr(unwrapped_model.peft_config["default"], "init_lora_weights", init_lora_weights)
elif output_dir == training_args.output_dir: # at the end of training
logger.info("Converted PiSSA adapter will be saved at: {}.".format(output_dir))
unwrapped_model = accelerator.unwrap_model(model)
if isinstance(unwrapped_model, PeftModel): # backup the pissa adapter for further use
unwrapped_model.save_pretrained(
pissa_backup_dir,
state_dict=state_dict,
safe_serialization=training_args.save_safetensors,
)
unwrapped_model.save_pretrained(
output_dir,
state_dict=state_dict,
safe_serialization=training_args.save_safetensors,
convert_pissa_to_lora=pissa_init_dir,
)
# TODO: the model is applied pissa again unexpectedly
unwrapped_model.load_adapter(pissa_backup_dir, "default", is_trainable=True)
unwrapped_model.set_adapter("default")
def _get_decay_parameter_names(model: "PreTrainedModel") -> List[str]:
r"""
Returns a list of names of parameters with weight decay. (weights in non-layernorm layers)

View File

@@ -20,11 +20,11 @@ import torch
from transformers import PreTrainedModel
from ..data import get_template_and_fix_tokenizer
from ..extras.callbacks import LogCallback
from ..extras.constants import V_HEAD_SAFE_WEIGHTS_NAME, V_HEAD_WEIGHTS_NAME
from ..extras.logging import get_logger
from ..hparams import get_infer_args, get_train_args
from ..model import load_model, load_tokenizer
from .callbacks import LogCallback
from .dpo import run_dpo
from .kto import run_kto
from .ppo import run_ppo
@@ -41,8 +41,8 @@ logger = get_logger(__name__)
def run_exp(args: Optional[Dict[str, Any]] = None, callbacks: List["TrainerCallback"] = []) -> None:
callbacks.append(LogCallback())
model_args, data_args, training_args, finetuning_args, generating_args = get_train_args(args)
callbacks.append(LogCallback(training_args.output_dir))
if finetuning_args.stage == "pt":
run_pt(model_args, data_args, training_args, finetuning_args, callbacks)