mirror of
https://github.com/hiyouga/LLaMA-Factory.git
synced 2025-08-02 03:32:50 +08:00
fix scripts
Former-commit-id: eb3e147d198a3ecb02c65f7733cec7cd9d3814a3
This commit is contained in:
parent
9bbeba6323
commit
819f487c8f
@ -22,9 +22,9 @@ import fire
|
|||||||
import torch
|
import torch
|
||||||
from torch.utils.data import DataLoader
|
from torch.utils.data import DataLoader
|
||||||
from tqdm import tqdm
|
from tqdm import tqdm
|
||||||
from transformers import DataCollatorForLanguageModeling, DataCollatorForSeq2Seq
|
from transformers import DataCollatorForLanguageModeling
|
||||||
|
|
||||||
from llamafactory.data import get_dataset, get_template_and_fix_tokenizer
|
from llamafactory.data import get_dataset, get_template_and_fix_tokenizer, MultiModalDataCollatorForSeq2Seq
|
||||||
from llamafactory.extras.constants import IGNORE_INDEX
|
from llamafactory.extras.constants import IGNORE_INDEX
|
||||||
from llamafactory.hparams import get_train_args
|
from llamafactory.hparams import get_train_args
|
||||||
from llamafactory.model import load_tokenizer
|
from llamafactory.model import load_tokenizer
|
||||||
@ -71,7 +71,7 @@ def calculate_lr(
|
|||||||
if stage == "pt":
|
if stage == "pt":
|
||||||
data_collator = DataCollatorForLanguageModeling(tokenizer=tokenizer, mlm=False)
|
data_collator = DataCollatorForLanguageModeling(tokenizer=tokenizer, mlm=False)
|
||||||
elif stage == "sft":
|
elif stage == "sft":
|
||||||
data_collator = DataCollatorForSeq2Seq(tokenizer=tokenizer, label_pad_token_id=IGNORE_INDEX)
|
data_collator = MultiModalDataCollatorForSeq2Seq(template=template, tokenizer=tokenizer, label_pad_token_id=IGNORE_INDEX)
|
||||||
else:
|
else:
|
||||||
raise NotImplementedError(f"Stage does not supported: {stage}.")
|
raise NotImplementedError(f"Stage does not supported: {stage}.")
|
||||||
|
|
||||||
@ -81,14 +81,13 @@ def calculate_lr(
|
|||||||
valid_tokens += torch.sum(batch["labels"] != IGNORE_INDEX).item()
|
valid_tokens += torch.sum(batch["labels"] != IGNORE_INDEX).item()
|
||||||
total_tokens += torch.numel(batch["labels"])
|
total_tokens += torch.numel(batch["labels"])
|
||||||
|
|
||||||
batch_max_len = cutoff_len * batch_size # max tokens in a batch
|
|
||||||
valid_ratio = valid_tokens / total_tokens
|
valid_ratio = valid_tokens / total_tokens
|
||||||
batch_valid_len = batch_max_len * valid_ratio
|
token_batch_size = cutoff_len * batch_size * valid_ratio
|
||||||
lr = BASE_LR * math.sqrt(batch_valid_len / BASE_BS) # lr ~ sqrt(batch_size)
|
lr = BASE_LR * math.sqrt(token_batch_size / BASE_BS) # lr ~ sqrt(batch_size)
|
||||||
lr = lr / 6.0 if is_mistral_or_gemma else lr
|
lr = lr / 6.0 if is_mistral_or_gemma else lr
|
||||||
print(
|
print(
|
||||||
"Optimal learning rate is {:.2e} for valid ratio% {:.2f} and effective batch size {:.2f}".format(
|
"Optimal learning rate is {:.2e} for valid ratio% {:.2f} and effective token batch size {:.2f}".format(
|
||||||
lr, valid_ratio * 100, batch_valid_len
|
lr, valid_ratio * 100, token_batch_size
|
||||||
)
|
)
|
||||||
)
|
)
|
||||||
|
|
||||||
|
@ -20,16 +20,16 @@ import fire
|
|||||||
import torch
|
import torch
|
||||||
from torch.utils.data import DataLoader
|
from torch.utils.data import DataLoader
|
||||||
from tqdm import tqdm
|
from tqdm import tqdm
|
||||||
from transformers import DataCollatorForLanguageModeling, DataCollatorForSeq2Seq
|
from transformers import DataCollatorForLanguageModeling
|
||||||
|
|
||||||
from llamafactory.data import get_dataset, get_template_and_fix_tokenizer
|
from llamafactory.data import MultiModalDataCollatorForSeq2Seq, get_dataset, get_template_and_fix_tokenizer
|
||||||
from llamafactory.extras.constants import IGNORE_INDEX
|
from llamafactory.extras.constants import IGNORE_INDEX
|
||||||
from llamafactory.hparams import get_train_args
|
from llamafactory.hparams import get_train_args
|
||||||
from llamafactory.model import load_model, load_tokenizer
|
from llamafactory.model import load_model, load_tokenizer
|
||||||
|
|
||||||
|
|
||||||
@dataclass
|
@dataclass
|
||||||
class PairwiseDataCollatorWithPadding(DataCollatorForSeq2Seq):
|
class PairwiseDataCollatorWithPadding(MultiModalDataCollatorForSeq2Seq):
|
||||||
r"""
|
r"""
|
||||||
Data collator for pairwise data.
|
Data collator for pairwise data.
|
||||||
"""
|
"""
|
||||||
@ -39,24 +39,25 @@ class PairwiseDataCollatorWithPadding(DataCollatorForSeq2Seq):
|
|||||||
def __call__(self, features: Sequence[Dict[str, Any]]) -> Dict[str, torch.Tensor]:
|
def __call__(self, features: Sequence[Dict[str, Any]]) -> Dict[str, torch.Tensor]:
|
||||||
r"""
|
r"""
|
||||||
Pads batched data to the longest sequence in the batch.
|
Pads batched data to the longest sequence in the batch.
|
||||||
|
|
||||||
We generate 2 * n examples where the first n examples represent chosen examples and
|
|
||||||
the last n examples represent rejected examples.
|
|
||||||
"""
|
"""
|
||||||
chosen_features = []
|
chosen_features = []
|
||||||
for feature in features:
|
for feature in features:
|
||||||
prompt_len, answer_len = len(feature["prompt_ids"]), len(feature["chosen_ids"])
|
chosen_features.append(
|
||||||
input_ids = feature["prompt_ids"] + feature["chosen_ids"]
|
{
|
||||||
attention_mask = [1] * (prompt_len + answer_len)
|
"input_ids": feature["chosen_input_ids"],
|
||||||
labels = input_ids if self.train_on_prompt else [IGNORE_INDEX] * prompt_len + feature["chosen_ids"]
|
"attention_mask": feature["chosen_attention_mask"],
|
||||||
chosen_features.append({"input_ids": input_ids, "attention_mask": attention_mask, "labels": labels})
|
"labels": feature["chosen_input_ids"] if self.train_on_prompt else feature["chosen_labels"],
|
||||||
|
"images": feature["images"],
|
||||||
|
"videos": feature["videos"],
|
||||||
|
}
|
||||||
|
)
|
||||||
|
|
||||||
return super().__call__(chosen_features)
|
return super().__call__(chosen_features)
|
||||||
|
|
||||||
|
|
||||||
def calculate_ppl(
|
def calculate_ppl(
|
||||||
model_name_or_path: str,
|
model_name_or_path: str,
|
||||||
save_name: str,
|
save_name: str = "ppl.json",
|
||||||
batch_size: int = 4,
|
batch_size: int = 4,
|
||||||
stage: Literal["pt", "sft", "rm"] = "sft",
|
stage: Literal["pt", "sft", "rm"] = "sft",
|
||||||
dataset: str = "alpaca_en_demo",
|
dataset: str = "alpaca_en_demo",
|
||||||
@ -68,7 +69,8 @@ def calculate_ppl(
|
|||||||
):
|
):
|
||||||
r"""
|
r"""
|
||||||
Calculates the ppl on the dataset of the pre-trained models.
|
Calculates the ppl on the dataset of the pre-trained models.
|
||||||
Usage: python cal_ppl.py --model_name_or_path path_to_model --dataset alpaca_en_demo --save_name ppl.json
|
Usage: export CUDA_VISIBLE_DEVICES=0
|
||||||
|
python cal_ppl.py --model_name_or_path path_to_model --dataset alpaca_en_demo --save_name ppl.json
|
||||||
"""
|
"""
|
||||||
model_args, data_args, training_args, finetuning_args, _ = get_train_args(
|
model_args, data_args, training_args, finetuning_args, _ = get_train_args(
|
||||||
dict(
|
dict(
|
||||||
@ -93,10 +95,12 @@ def calculate_ppl(
|
|||||||
if stage == "pt":
|
if stage == "pt":
|
||||||
data_collator = DataCollatorForLanguageModeling(tokenizer=tokenizer, mlm=False)
|
data_collator = DataCollatorForLanguageModeling(tokenizer=tokenizer, mlm=False)
|
||||||
elif stage == "sft":
|
elif stage == "sft":
|
||||||
data_collator = DataCollatorForSeq2Seq(tokenizer=tokenizer, label_pad_token_id=IGNORE_INDEX)
|
data_collator = MultiModalDataCollatorForSeq2Seq(
|
||||||
|
template=template, tokenizer=tokenizer, label_pad_token_id=IGNORE_INDEX
|
||||||
|
)
|
||||||
elif stage == "rm":
|
elif stage == "rm":
|
||||||
data_collator = PairwiseDataCollatorWithPadding(
|
data_collator = PairwiseDataCollatorWithPadding(
|
||||||
tokenizer=tokenizer, label_pad_token_id=IGNORE_INDEX, train_on_prompt=train_on_prompt
|
template=template, tokenizer=tokenizer, label_pad_token_id=IGNORE_INDEX, train_on_prompt=train_on_prompt
|
||||||
)
|
)
|
||||||
else:
|
else:
|
||||||
raise NotImplementedError(f"Stage does not supported: {stage}.")
|
raise NotImplementedError(f"Stage does not supported: {stage}.")
|
||||||
|
@ -31,7 +31,8 @@ def length_cdf(
|
|||||||
):
|
):
|
||||||
r"""
|
r"""
|
||||||
Calculates the distribution of the input lengths in the dataset.
|
Calculates the distribution of the input lengths in the dataset.
|
||||||
Usage: python length_cdf.py --model_name_or_path path_to_model --dataset alpaca_en_demo --template default
|
Usage: export CUDA_VISIBLE_DEVICES=0
|
||||||
|
python length_cdf.py --model_name_or_path path_to_model --dataset alpaca_en_demo --template default
|
||||||
"""
|
"""
|
||||||
model_args, data_args, training_args, _, _ = get_train_args(
|
model_args, data_args, training_args, _, _ = get_train_args(
|
||||||
dict(
|
dict(
|
||||||
|
@ -86,6 +86,10 @@ class MultiModalDataCollatorForSeq2Seq(DataCollatorForSeq2Seq):
|
|||||||
template: Optional["Template"] = None
|
template: Optional["Template"] = None
|
||||||
processor: Optional["ProcessorMixin"] = None
|
processor: Optional["ProcessorMixin"] = None
|
||||||
|
|
||||||
|
def __post_init__(self):
|
||||||
|
if self.template is None:
|
||||||
|
raise ValueError("Template is required for MultiModalDataCollator.")
|
||||||
|
|
||||||
def __call__(self, features: Sequence[Dict[str, Any]]) -> Dict[str, "torch.Tensor"]:
|
def __call__(self, features: Sequence[Dict[str, Any]]) -> Dict[str, "torch.Tensor"]:
|
||||||
batch_images, batch_videos, batch_imglens, batch_vidlens, batch_input_ids = [], [], [], [], []
|
batch_images, batch_videos, batch_imglens, batch_vidlens, batch_input_ids = [], [], [], [], []
|
||||||
for feature in features:
|
for feature in features:
|
||||||
|
Loading…
x
Reference in New Issue
Block a user