refactor webui

This commit is contained in:
hiyouga
2023-10-15 03:06:21 +08:00
parent c874e764b8
commit 7ed1fa6fe9
14 changed files with 440 additions and 501 deletions

View File

@@ -4,13 +4,15 @@ from typing import TYPE_CHECKING, Dict, Optional, Tuple
if TYPE_CHECKING:
from gradio.blocks import Block
from gradio.components import Component
from llmtuner.webui.chat import WebChatModel
from llmtuner.webui.engine import Engine
def create_chat_box(
chat_model: "WebChatModel",
engine: "Engine",
visible: Optional[bool] = False
) -> Tuple["Block", "Component", "Component", Dict[str, "Component"]]:
elem_dict = dict()
with gr.Box(visible=visible) as chat_box:
chatbot = gr.Chatbot()
@@ -22,14 +24,20 @@ def create_chat_box(
with gr.Column(scale=1):
clear_btn = gr.Button()
max_new_tokens = gr.Slider(10, 2048, value=chat_model.generating_args.max_new_tokens, step=1)
top_p = gr.Slider(0.01, 1, value=chat_model.generating_args.top_p, step=0.01)
temperature = gr.Slider(0.01, 1.5, value=chat_model.generating_args.temperature, step=0.01)
gen_kwargs = engine.chatter.generating_args
max_new_tokens = gr.Slider(10, 2048, value=gen_kwargs.max_new_tokens, step=1)
top_p = gr.Slider(0.01, 1, value=gen_kwargs.top_p, step=0.01)
temperature = gr.Slider(0.01, 1.5, value=gen_kwargs.temperature, step=0.01)
elem_dict.update(dict(
system=system, query=query, submit_btn=submit_btn, clear_btn=clear_btn,
max_new_tokens=max_new_tokens, top_p=top_p, temperature=temperature
))
history = gr.State([])
submit_btn.click(
chat_model.predict,
engine.chatter.predict,
[chatbot, query, history, system, max_new_tokens, top_p, temperature],
[chatbot, history],
show_progress=True
@@ -39,12 +47,4 @@ def create_chat_box(
clear_btn.click(lambda: ([], []), outputs=[chatbot, history], show_progress=True)
return chat_box, chatbot, history, dict(
system=system,
query=query,
submit_btn=submit_btn,
clear_btn=clear_btn,
max_new_tokens=max_new_tokens,
top_p=top_p,
temperature=temperature
)
return chat_box, chatbot, history, elem_dict

View File

@@ -7,19 +7,28 @@ from llmtuner.webui.utils import can_preview, get_preview
if TYPE_CHECKING:
from gradio.components import Component
from llmtuner.webui.runner import Runner
from llmtuner.webui.engine import Engine
def create_eval_tab(top_elems: Dict[str, "Component"], runner: "Runner") -> Dict[str, "Component"]:
def create_eval_tab(engine: "Engine") -> Dict[str, "Component"]:
input_elems = engine.manager.get_base_elems()
elem_dict = dict()
with gr.Row():
dataset_dir = gr.Textbox(value=DEFAULT_DATA_DIR, scale=2)
dataset = gr.Dropdown(multiselect=True, scale=4)
data_preview_btn = gr.Button(interactive=False, scale=1)
preview_box, preview_count, preview_samples, close_btn = create_preview_box()
dataset_dir.change(list_dataset, [dataset_dir], [dataset])
dataset.change(can_preview, [dataset_dir, dataset], [data_preview_btn])
input_elems.update({dataset_dir, dataset})
elem_dict.update(dict(
dataset_dir=dataset_dir, dataset=dataset, data_preview_btn=data_preview_btn
))
preview_box, preview_count, preview_samples, close_btn = create_preview_box()
data_preview_btn.click(
get_preview,
[dataset_dir, dataset],
@@ -27,17 +36,31 @@ def create_eval_tab(top_elems: Dict[str, "Component"], runner: "Runner") -> Dict
queue=False
)
elem_dict.update(dict(
preview_count=preview_count, preview_samples=preview_samples, close_btn=close_btn
))
with gr.Row():
cutoff_len = gr.Slider(value=1024, minimum=4, maximum=8192, step=1)
max_samples = gr.Textbox(value="100000")
batch_size = gr.Slider(value=8, minimum=1, maximum=512, step=1)
predict = gr.Checkbox(value=True)
input_elems.update({cutoff_len, max_samples, batch_size, predict})
elem_dict.update(dict(
cutoff_len=cutoff_len, max_samples=max_samples, batch_size=batch_size, predict=predict
))
with gr.Row():
max_new_tokens = gr.Slider(10, 2048, value=128, step=1)
top_p = gr.Slider(0.01, 1, value=0.7, step=0.01)
temperature = gr.Slider(0.01, 1.5, value=0.95, step=0.01)
input_elems.update({max_new_tokens, top_p, temperature})
elem_dict.update(dict(
max_new_tokens=max_new_tokens, top_p=top_p, temperature=temperature
))
with gr.Row():
cmd_preview_btn = gr.Button()
start_btn = gr.Button()
@@ -49,53 +72,13 @@ def create_eval_tab(top_elems: Dict[str, "Component"], runner: "Runner") -> Dict
with gr.Box():
output_box = gr.Markdown()
input_components = [
top_elems["lang"],
top_elems["model_name"],
top_elems["checkpoints"],
top_elems["finetuning_type"],
top_elems["quantization_bit"],
top_elems["template"],
top_elems["system_prompt"],
top_elems["flash_attn"],
top_elems["shift_attn"],
top_elems["rope_scaling"],
dataset_dir,
dataset,
cutoff_len,
max_samples,
batch_size,
predict,
max_new_tokens,
top_p,
temperature
]
output_elems = [output_box, process_bar]
elem_dict.update(dict(
cmd_preview_btn=cmd_preview_btn, start_btn=start_btn, stop_btn=stop_btn, output_box=output_box
))
output_components = [
output_box,
process_bar
]
cmd_preview_btn.click(engine.runner.preview_eval, input_elems, output_elems)
start_btn.click(engine.runner.run_eval, input_elems, output_elems)
stop_btn.click(engine.runner.set_abort, queue=False)
cmd_preview_btn.click(runner.preview_eval, input_components, output_components)
start_btn.click(runner.run_eval, input_components, output_components)
stop_btn.click(runner.set_abort, queue=False)
return dict(
dataset_dir=dataset_dir,
dataset=dataset,
data_preview_btn=data_preview_btn,
preview_count=preview_count,
preview_samples=preview_samples,
close_btn=close_btn,
cutoff_len=cutoff_len,
max_samples=max_samples,
batch_size=batch_size,
predict=predict,
max_new_tokens=max_new_tokens,
top_p=top_p,
temperature=temperature,
cmd_preview_btn=cmd_preview_btn,
start_btn=start_btn,
stop_btn=stop_btn,
output_box=output_box
)
return elem_dict

View File

@@ -5,9 +5,12 @@ from llmtuner.webui.utils import save_model
if TYPE_CHECKING:
from gradio.components import Component
from llmtuner.webui.engine import Engine
def create_export_tab(top_elems: Dict[str, "Component"]) -> Dict[str, "Component"]:
def create_export_tab(engine: "Engine") -> Dict[str, "Component"]:
elem_dict = dict()
with gr.Row():
save_dir = gr.Textbox()
max_shard_size = gr.Slider(value=10, minimum=1, maximum=100)
@@ -18,20 +21,23 @@ def create_export_tab(top_elems: Dict[str, "Component"]) -> Dict[str, "Component
export_btn.click(
save_model,
[
top_elems["lang"],
top_elems["model_name"],
top_elems["checkpoints"],
top_elems["finetuning_type"],
top_elems["template"],
engine.manager.get_elem("top.lang"),
engine.manager.get_elem("top.model_name"),
engine.manager.get_elem("top.model_path"),
engine.manager.get_elem("top.checkpoints"),
engine.manager.get_elem("top.finetuning_type"),
engine.manager.get_elem("top.template"),
max_shard_size,
save_dir
],
[info_box]
)
return dict(
elem_dict.update(dict(
save_dir=save_dir,
max_shard_size=max_shard_size,
export_btn=export_btn,
info_box=info_box
)
))
return elem_dict

View File

@@ -1,53 +1,42 @@
import gradio as gr
from typing import TYPE_CHECKING, Dict
from llmtuner.webui.chat import WebChatModel
from llmtuner.webui.components.chatbot import create_chat_box
if TYPE_CHECKING:
from gradio.components import Component
from llmtuner.webui.engine import Engine
def create_infer_tab(top_elems: Dict[str, "Component"]) -> Dict[str, "Component"]:
def create_infer_tab(engine: "Engine") -> Dict[str, "Component"]:
input_elems = engine.manager.get_base_elems()
elem_dict = dict()
with gr.Row():
load_btn = gr.Button()
unload_btn = gr.Button()
info_box = gr.Textbox(show_label=False, interactive=False)
chat_model = WebChatModel(lazy_init=True)
chat_box, chatbot, history, chat_elems = create_chat_box(chat_model)
elem_dict.update(dict(
info_box=info_box, load_btn=load_btn, unload_btn=unload_btn
))
chat_box, chatbot, history, chat_elems = create_chat_box(engine, visible=False)
elem_dict.update(dict(chat_box=chat_box, **chat_elems))
load_btn.click(
chat_model.load_model,
[
top_elems["lang"],
top_elems["model_name"],
top_elems["checkpoints"],
top_elems["finetuning_type"],
top_elems["quantization_bit"],
top_elems["template"],
top_elems["system_prompt"],
top_elems["flash_attn"],
top_elems["shift_attn"],
top_elems["rope_scaling"]
],
[info_box]
engine.chatter.load_model, input_elems, [info_box]
).then(
lambda: gr.update(visible=(chat_model.model is not None)), outputs=[chat_box]
lambda: gr.update(visible=engine.chatter.loaded), outputs=[chat_box]
)
unload_btn.click(
chat_model.unload_model, [top_elems["lang"]], [info_box]
engine.chatter.unload_model, input_elems, [info_box]
).then(
lambda: ([], []), outputs=[chatbot, history]
).then(
lambda: gr.update(visible=(chat_model.model is not None)), outputs=[chat_box]
lambda: gr.update(visible=engine.chatter.loaded), outputs=[chat_box]
)
return dict(
info_box=info_box,
load_btn=load_btn,
unload_btn=unload_btn,
**chat_elems
)
return elem_dict

View File

@@ -3,15 +3,17 @@ from typing import TYPE_CHECKING, Dict
from llmtuner.extras.constants import METHODS, SUPPORTED_MODELS
from llmtuner.extras.template import templates
from llmtuner.webui.common import list_checkpoint, get_model_path, get_template, save_config
from llmtuner.webui.common import get_model_path, get_template, list_checkpoint, load_config, save_config
from llmtuner.webui.utils import can_quantize
if TYPE_CHECKING:
from gradio.components import Component
from llmtuner.webui.engine import Engine
def create_top() -> Dict[str, "Component"]:
def create_top(engine: "Engine") -> Dict[str, "Component"]:
available_models = list(SUPPORTED_MODELS.keys()) + ["Custom"]
config = gr.State(value=load_config())
with gr.Row():
lang = gr.Dropdown(choices=["en", "zh"], scale=1)
@@ -35,17 +37,21 @@ def create_top() -> Dict[str, "Component"]:
shift_attn = gr.Checkbox(value=False)
rope_scaling = gr.Dropdown(choices=["none", "linear", "dynamic"], value="none")
lang.change(save_config, [lang, model_name, model_path])
lang.change(
engine.change_lang, [lang], engine.manager.list_elems(), queue=False
).then(
save_config, inputs=[config, lang, model_name, model_path]
)
model_name.change(
list_checkpoint, [model_name, finetuning_type], [checkpoints]
).then(
get_model_path, [model_name], [model_path]
get_model_path, [config, model_name], [model_path]
).then(
get_template, [model_name], [template]
) # do not save config since the below line will save
model_path.change(save_config, [lang, model_name, model_path])
model_path.change(save_config, inputs=[config, lang, model_name, model_path])
finetuning_type.change(
list_checkpoint, [model_name, finetuning_type], [checkpoints]
@@ -58,6 +64,7 @@ def create_top() -> Dict[str, "Component"]:
)
return dict(
config=config,
lang=lang,
model_name=model_name,
model_path=model_path,

View File

@@ -9,10 +9,13 @@ from llmtuner.webui.utils import can_preview, get_preview, gen_plot
if TYPE_CHECKING:
from gradio.components import Component
from llmtuner.webui.runner import Runner
from llmtuner.webui.engine import Engine
def create_train_tab(top_elems: Dict[str, "Component"], runner: "Runner") -> Dict[str, "Component"]:
def create_train_tab(engine: "Engine") -> Dict[str, "Component"]:
input_elems = engine.manager.get_base_elems()
elem_dict = dict()
with gr.Row():
training_stage = gr.Dropdown(
choices=list(TRAINING_STAGES.keys()), value=list(TRAINING_STAGES.keys())[0], scale=2
@@ -21,11 +24,17 @@ def create_train_tab(top_elems: Dict[str, "Component"], runner: "Runner") -> Dic
dataset = gr.Dropdown(multiselect=True, scale=4)
data_preview_btn = gr.Button(interactive=False, scale=1)
preview_box, preview_count, preview_samples, close_btn = create_preview_box()
training_stage.change(list_dataset, [dataset_dir, training_stage], [dataset])
dataset_dir.change(list_dataset, [dataset_dir, training_stage], [dataset])
dataset.change(can_preview, [dataset_dir, dataset], [data_preview_btn])
input_elems.update({training_stage, dataset_dir, dataset})
elem_dict.update(dict(
training_stage=training_stage, dataset_dir=dataset_dir, dataset=dataset, data_preview_btn=data_preview_btn
))
preview_box, preview_count, preview_samples, close_btn = create_preview_box()
data_preview_btn.click(
get_preview,
[dataset_dir, dataset],
@@ -33,6 +42,10 @@ def create_train_tab(top_elems: Dict[str, "Component"], runner: "Runner") -> Dic
queue=False
)
elem_dict.update(dict(
preview_count=preview_count, preview_samples=preview_samples, close_btn=close_btn
))
with gr.Row():
cutoff_len = gr.Slider(value=1024, minimum=4, maximum=8192, step=1)
learning_rate = gr.Textbox(value="5e-5")
@@ -40,6 +53,12 @@ def create_train_tab(top_elems: Dict[str, "Component"], runner: "Runner") -> Dic
max_samples = gr.Textbox(value="100000")
compute_type = gr.Radio(choices=["fp16", "bf16"], value="fp16")
input_elems.update({cutoff_len, learning_rate, num_train_epochs, max_samples, compute_type})
elem_dict.update(dict(
cutoff_len=cutoff_len, learning_rate=learning_rate, num_train_epochs=num_train_epochs,
max_samples=max_samples, compute_type=compute_type
))
with gr.Row():
batch_size = gr.Slider(value=4, minimum=1, maximum=512, step=1)
gradient_accumulation_steps = gr.Slider(value=4, minimum=1, maximum=512, step=1)
@@ -49,12 +68,23 @@ def create_train_tab(top_elems: Dict[str, "Component"], runner: "Runner") -> Dic
max_grad_norm = gr.Textbox(value="1.0")
val_size = gr.Slider(value=0, minimum=0, maximum=1, step=0.001)
input_elems.update({batch_size, gradient_accumulation_steps, lr_scheduler_type, max_grad_norm, val_size})
elem_dict.update(dict(
batch_size=batch_size, gradient_accumulation_steps=gradient_accumulation_steps,
lr_scheduler_type=lr_scheduler_type, max_grad_norm=max_grad_norm, val_size=val_size
))
with gr.Accordion(label="Advanced config", open=False) as advanced_tab:
with gr.Row():
logging_steps = gr.Slider(value=5, minimum=5, maximum=1000, step=5)
save_steps = gr.Slider(value=100, minimum=10, maximum=5000, step=10)
warmup_steps = gr.Slider(value=0, minimum=0, maximum=5000, step=1)
input_elems.update({logging_steps, save_steps, warmup_steps})
elem_dict.update(dict(
advanced_tab=advanced_tab, logging_steps=logging_steps, save_steps=save_steps, warmup_steps=warmup_steps
))
with gr.Accordion(label="LoRA config", open=False) as lora_tab:
with gr.Row():
lora_rank = gr.Slider(value=8, minimum=1, maximum=1024, step=1, scale=1)
@@ -62,6 +92,15 @@ def create_train_tab(top_elems: Dict[str, "Component"], runner: "Runner") -> Dic
lora_target = gr.Textbox(scale=2)
resume_lora_training = gr.Checkbox(value=True, scale=1)
input_elems.update({lora_rank, lora_dropout, lora_target, resume_lora_training})
elem_dict.update(dict(
lora_tab=lora_tab,
lora_rank=lora_rank,
lora_dropout=lora_dropout,
lora_target=lora_target,
resume_lora_training=resume_lora_training,
))
with gr.Accordion(label="RLHF config", open=False) as rlhf_tab:
with gr.Row():
dpo_beta = gr.Slider(value=0.1, minimum=0, maximum=1, step=0.01, scale=1)
@@ -70,11 +109,14 @@ def create_train_tab(top_elems: Dict[str, "Component"], runner: "Runner") -> Dic
refresh_btn.click(
list_checkpoint,
[top_elems["model_name"], top_elems["finetuning_type"]],
[engine.manager.get_elem("top.model_name"), engine.manager.get_elem("top.finetuning_type")],
[reward_model],
queue=False
)
input_elems.update({dpo_beta, reward_model})
elem_dict.update(dict(rlhf_tab=rlhf_tab, dpo_beta=dpo_beta, reward_model=reward_model, refresh_btn=refresh_btn))
with gr.Row():
cmd_preview_btn = gr.Button()
start_btn = gr.Button()
@@ -94,90 +136,22 @@ def create_train_tab(top_elems: Dict[str, "Component"], runner: "Runner") -> Dic
with gr.Column(scale=1):
loss_viewer = gr.Plot()
input_components = [
top_elems["lang"],
top_elems["model_name"],
top_elems["checkpoints"],
top_elems["finetuning_type"],
top_elems["quantization_bit"],
top_elems["template"],
top_elems["system_prompt"],
top_elems["flash_attn"],
top_elems["shift_attn"],
top_elems["rope_scaling"],
training_stage,
dataset_dir,
dataset,
cutoff_len,
learning_rate,
num_train_epochs,
max_samples,
compute_type,
batch_size,
gradient_accumulation_steps,
lr_scheduler_type,
max_grad_norm,
val_size,
logging_steps,
save_steps,
warmup_steps,
lora_rank,
lora_dropout,
lora_target,
resume_lora_training,
dpo_beta,
reward_model,
output_dir
]
input_elems.add(output_dir)
output_elems = [output_box, process_bar]
elem_dict.update(dict(
cmd_preview_btn=cmd_preview_btn, start_btn=start_btn, stop_btn=stop_btn,
output_dir=output_dir, output_box=output_box, loss_viewer=loss_viewer
))
output_components = [
output_box,
process_bar
]
cmd_preview_btn.click(runner.preview_train, input_components, output_components)
start_btn.click(runner.run_train, input_components, output_components)
stop_btn.click(runner.set_abort, queue=False)
cmd_preview_btn.click(engine.runner.preview_train, input_elems, output_elems)
start_btn.click(engine.runner.run_train, input_elems, output_elems)
stop_btn.click(engine.runner.set_abort, queue=False)
process_bar.change(
gen_plot, [top_elems["model_name"], top_elems["finetuning_type"], output_dir], loss_viewer, queue=False
gen_plot,
[engine.manager.get_elem("top.model_name"), engine.manager.get_elem("top.finetuning_type"), output_dir],
loss_viewer,
queue=False
)
return dict(
training_stage=training_stage,
dataset_dir=dataset_dir,
dataset=dataset,
data_preview_btn=data_preview_btn,
preview_count=preview_count,
preview_samples=preview_samples,
close_btn=close_btn,
cutoff_len=cutoff_len,
learning_rate=learning_rate,
num_train_epochs=num_train_epochs,
max_samples=max_samples,
compute_type=compute_type,
batch_size=batch_size,
gradient_accumulation_steps=gradient_accumulation_steps,
lr_scheduler_type=lr_scheduler_type,
max_grad_norm=max_grad_norm,
val_size=val_size,
advanced_tab=advanced_tab,
logging_steps=logging_steps,
save_steps=save_steps,
warmup_steps=warmup_steps,
lora_tab=lora_tab,
lora_rank=lora_rank,
lora_dropout=lora_dropout,
lora_target=lora_target,
resume_lora_training=resume_lora_training,
rlhf_tab=rlhf_tab,
dpo_beta=dpo_beta,
reward_model=reward_model,
refresh_btn=refresh_btn,
cmd_preview_btn=cmd_preview_btn,
start_btn=start_btn,
stop_btn=stop_btn,
output_dir=output_dir,
output_box=output_box,
loss_viewer=loss_viewer
)
return elem_dict