mirror of
https://github.com/hiyouga/LLaMA-Factory.git
synced 2025-12-15 03:10:35 +08:00
support unsloth
This commit is contained in:
@@ -18,85 +18,14 @@ from llmtuner.extras.packages import is_flash_attn2_available
|
||||
if TYPE_CHECKING:
|
||||
from transformers import PretrainedConfig, PreTrainedTokenizer
|
||||
from trl import AutoModelForCausalLMWithValueHead
|
||||
from llmtuner.hparams import ModelArguments, FinetuningArguments
|
||||
from llmtuner.hparams import ModelArguments
|
||||
|
||||
|
||||
logger = get_logger(__name__)
|
||||
SUPPORTED_CLASS_FOR_S2ATTN = [] # TODO: add llama
|
||||
|
||||
|
||||
def configure_flashattn(config_kwargs: Dict[str, Any], model_args: "ModelArguments"):
|
||||
if model_args.flash_attn and is_flash_attn2_available():
|
||||
config_kwargs["use_flash_attention_2"] = True
|
||||
logger.info("Using FlashAttention-2 for faster training and inference.")
|
||||
|
||||
|
||||
def configure_longlora(config: "PretrainedConfig", model_args: "ModelArguments", is_trainable: bool):
|
||||
if is_trainable and model_args.shift_attn:
|
||||
if getattr(config, "model_type", None) in SUPPORTED_CLASS_FOR_S2ATTN:
|
||||
setattr(config, "group_size_ratio", 0.25)
|
||||
logger.info("Using shift short attention with group_size_ratio=1/4.")
|
||||
else:
|
||||
logger.warning("Current model does not support shift short attention.")
|
||||
|
||||
|
||||
def configure_quantization(
|
||||
config: "PretrainedConfig",
|
||||
config_kwargs: Dict[str, Any],
|
||||
tokenizer: "PreTrainedTokenizer",
|
||||
model_args: "ModelArguments",
|
||||
finetuning_args: "FinetuningArguments"
|
||||
):
|
||||
r"""
|
||||
Priority: Pre-quantized (training) > AutoGPTQ (export) > Bitsandbytes (training)
|
||||
"""
|
||||
if getattr(config, "quantization_config", None): # gptq or awq
|
||||
if is_deepspeed_zero3_enabled():
|
||||
raise ValueError("DeepSpeed ZeRO-3 is incompatible with quantization.")
|
||||
|
||||
config_kwargs["device_map"] = {"": get_current_device()}
|
||||
quantization_config = getattr(config, "quantization_config", None)
|
||||
logger.info("Loading {}-bit pre-quantized model.".format(quantization_config.get("bits", -1)))
|
||||
|
||||
elif finetuning_args.export_quantization_bit is not None: # gptq
|
||||
require_version("optimum>=1.16.0", "To fix: pip install optimum>=1.16.0")
|
||||
require_version("auto_gptq>=0.5.0", "To fix: pip install auto_gptq>=0.5.0")
|
||||
from accelerate.utils import get_max_memory
|
||||
|
||||
if getattr(config, "model_type", None) == "chatglm":
|
||||
raise ValueError("ChatGLM model is not supported.")
|
||||
|
||||
config_kwargs["quantization_config"] = GPTQConfig(
|
||||
bits=finetuning_args.export_quantization_bit,
|
||||
tokenizer=tokenizer,
|
||||
dataset=get_quantization_dataset(tokenizer, model_args, finetuning_args)
|
||||
)
|
||||
config_kwargs["device_map"] = "auto"
|
||||
config_kwargs["max_memory"] = get_max_memory()
|
||||
logger.info("Quantizing model to {} bit.".format(finetuning_args.export_quantization_bit))
|
||||
|
||||
elif model_args.quantization_bit is not None: # bnb
|
||||
if is_deepspeed_zero3_enabled():
|
||||
raise ValueError("DeepSpeed ZeRO-3 is incompatible with quantization.")
|
||||
|
||||
if model_args.quantization_bit == 8:
|
||||
require_version("bitsandbytes>=0.37.0", "To fix: pip install bitsandbytes>=0.37.0")
|
||||
config_kwargs["quantization_config"] = BitsAndBytesConfig(load_in_8bit=True)
|
||||
|
||||
elif model_args.quantization_bit == 4:
|
||||
require_version("bitsandbytes>=0.39.0", "To fix: pip install bitsandbytes>=0.39.0")
|
||||
config_kwargs["quantization_config"] = BitsAndBytesConfig(
|
||||
load_in_4bit=True,
|
||||
bnb_4bit_compute_dtype=model_args.compute_dtype,
|
||||
bnb_4bit_use_double_quant=model_args.double_quantization,
|
||||
bnb_4bit_quant_type=model_args.quantization_type
|
||||
)
|
||||
|
||||
config_kwargs["device_map"] = {"": get_current_device()}
|
||||
logger.info("Quantizing model to {} bit.".format(model_args.quantization_bit))
|
||||
|
||||
|
||||
def configure_rope(config: "PretrainedConfig", model_args: "ModelArguments", is_trainable: bool):
|
||||
def _configure_rope(config: "PretrainedConfig", model_args: "ModelArguments", is_trainable: bool):
|
||||
if model_args.rope_scaling is not None:
|
||||
if not hasattr(config, "rope_scaling"):
|
||||
logger.warning("Current model does not support RoPE scaling.")
|
||||
@@ -123,27 +52,94 @@ def configure_rope(config: "PretrainedConfig", model_args: "ModelArguments", is_
|
||||
))
|
||||
|
||||
|
||||
def get_quantization_dataset(
|
||||
def _configure_flashattn(model_args: "ModelArguments", config_kwargs: Dict[str, Any]):
|
||||
if model_args.flash_attn and is_flash_attn2_available():
|
||||
config_kwargs["use_flash_attention_2"] = True
|
||||
config_kwargs["torch_dtype"] = model_args.compute_dtype
|
||||
logger.info("Using FlashAttention-2 for faster training and inference.")
|
||||
|
||||
|
||||
def _configure_longlora(config: "PretrainedConfig", model_args: "ModelArguments", is_trainable: bool):
|
||||
if is_trainable and model_args.shift_attn:
|
||||
if getattr(config, "model_type", None) in SUPPORTED_CLASS_FOR_S2ATTN:
|
||||
setattr(config, "group_size_ratio", 0.25)
|
||||
logger.info("Using shift short attention with group_size_ratio=1/4.")
|
||||
else:
|
||||
logger.warning("Current model does not support shift short attention.")
|
||||
|
||||
|
||||
def _configure_quantization(
|
||||
config: "PretrainedConfig",
|
||||
tokenizer: "PreTrainedTokenizer",
|
||||
model_args: "ModelArguments",
|
||||
finetuning_args: "FinetuningArguments"
|
||||
) -> List[str]:
|
||||
config_kwargs: Dict[str, Any]
|
||||
):
|
||||
r"""
|
||||
Priority: Pre-quantized (training) > AutoGPTQ (export) > Bitsandbytes (training)
|
||||
"""
|
||||
if getattr(config, "quantization_config", None): # gptq or awq
|
||||
if is_deepspeed_zero3_enabled():
|
||||
raise ValueError("DeepSpeed ZeRO-3 is incompatible with quantization.")
|
||||
|
||||
config_kwargs["device_map"] = {"": get_current_device()}
|
||||
quantization_config = getattr(config, "quantization_config", None)
|
||||
logger.info("Loading {}-bit pre-quantized model.".format(quantization_config.get("bits", -1)))
|
||||
|
||||
elif model_args.export_quantization_bit is not None: # gptq
|
||||
require_version("optimum>=1.16.0", "To fix: pip install optimum>=1.16.0")
|
||||
require_version("auto_gptq>=0.5.0", "To fix: pip install auto_gptq>=0.5.0")
|
||||
from accelerate.utils import get_max_memory
|
||||
|
||||
if getattr(config, "model_type", None) == "chatglm":
|
||||
raise ValueError("ChatGLM model is not supported.")
|
||||
|
||||
config_kwargs["quantization_config"] = GPTQConfig(
|
||||
bits=model_args.export_quantization_bit,
|
||||
tokenizer=tokenizer,
|
||||
dataset=get_quantization_dataset(tokenizer, model_args)
|
||||
)
|
||||
config_kwargs["device_map"] = "auto"
|
||||
config_kwargs["max_memory"] = get_max_memory()
|
||||
logger.info("Quantizing model to {} bit.".format(model_args.export_quantization_bit))
|
||||
|
||||
elif model_args.quantization_bit is not None: # bnb
|
||||
if is_deepspeed_zero3_enabled():
|
||||
raise ValueError("DeepSpeed ZeRO-3 is incompatible with quantization.")
|
||||
|
||||
if model_args.quantization_bit == 8:
|
||||
require_version("bitsandbytes>=0.37.0", "To fix: pip install bitsandbytes>=0.37.0")
|
||||
config_kwargs["quantization_config"] = BitsAndBytesConfig(load_in_8bit=True)
|
||||
|
||||
elif model_args.quantization_bit == 4:
|
||||
require_version("bitsandbytes>=0.39.0", "To fix: pip install bitsandbytes>=0.39.0")
|
||||
config_kwargs["quantization_config"] = BitsAndBytesConfig(
|
||||
load_in_4bit=True,
|
||||
bnb_4bit_compute_dtype=model_args.compute_dtype,
|
||||
bnb_4bit_use_double_quant=model_args.double_quantization,
|
||||
bnb_4bit_quant_type=model_args.quantization_type
|
||||
)
|
||||
|
||||
config_kwargs["device_map"] = {"": get_current_device()}
|
||||
logger.info("Quantizing model to {} bit.".format(model_args.quantization_bit))
|
||||
|
||||
|
||||
def get_quantization_dataset(tokenizer: "PreTrainedTokenizer", model_args: "ModelArguments") -> List[str]:
|
||||
r"""
|
||||
Inspired by: https://github.com/huggingface/optimum/blob/v1.16.0/optimum/gptq/data.py#L133
|
||||
TODO: remove tokenizer.decode() https://github.com/huggingface/optimum/pull/1600
|
||||
"""
|
||||
if os.path.isfile(finetuning_args.export_quantization_dataset):
|
||||
data_path = FILEEXT2TYPE.get(finetuning_args.export_quantization_dataset.split(".")[-1], None)
|
||||
data_files = finetuning_args.export_quantization_dataset
|
||||
if os.path.isfile(model_args.export_quantization_dataset):
|
||||
data_path = FILEEXT2TYPE.get(model_args.export_quantization_dataset.split(".")[-1], None)
|
||||
data_files = model_args.export_quantization_dataset
|
||||
else:
|
||||
data_path = finetuning_args.export_quantization_dataset
|
||||
data_path = model_args.export_quantization_dataset
|
||||
data_files = None
|
||||
|
||||
dataset = load_dataset(path=data_path, data_files=data_files, split="train", cache_dir=model_args.cache_dir)
|
||||
maxlen = finetuning_args.export_quantization_maxlen
|
||||
maxlen = model_args.export_quantization_maxlen
|
||||
|
||||
samples = []
|
||||
for _ in range(finetuning_args.export_quantization_nsamples):
|
||||
for _ in range(model_args.export_quantization_nsamples):
|
||||
while True:
|
||||
sample_idx = random.randint(0, len(dataset) - 1)
|
||||
sample: Dict[str, torch.Tensor] = tokenizer(dataset[sample_idx]["text"], return_tensors="pt")
|
||||
@@ -151,13 +147,24 @@ def get_quantization_dataset(
|
||||
break # TODO: fix large maxlen
|
||||
|
||||
word_idx = random.randint(0, sample["input_ids"].size(1) - maxlen - 1)
|
||||
input_ids = sample["input_ids"][:, word_idx:word_idx+maxlen]
|
||||
input_ids = sample["input_ids"][:, word_idx : word_idx + maxlen]
|
||||
samples.append(tokenizer.decode(input_ids[0].tolist(), skip_special_tokens=True))
|
||||
|
||||
return samples
|
||||
|
||||
|
||||
def patch_config(config: "PretrainedConfig", model_args: "ModelArguments"):
|
||||
def patch_tokenizer(tokenizer: "PreTrainedTokenizer"):
|
||||
if "PreTrainedTokenizerBase" not in str(tokenizer._pad.__func__):
|
||||
tokenizer._pad = MethodType(PreTrainedTokenizerBase._pad, tokenizer)
|
||||
|
||||
|
||||
def patch_config(
|
||||
config: "PretrainedConfig",
|
||||
tokenizer: "PreTrainedTokenizer",
|
||||
model_args: "ModelArguments",
|
||||
config_kwargs: Dict[str, Any],
|
||||
is_trainable: bool
|
||||
):
|
||||
if model_args.compute_dtype is None: # priority: bf16 > fp16 > fp32
|
||||
model_args.compute_dtype = infer_optim_dtype(model_dtype=getattr(config, "torch_dtype", None))
|
||||
setattr(config, "torch_dtype", model_args.compute_dtype)
|
||||
@@ -166,6 +173,11 @@ def patch_config(config: "PretrainedConfig", model_args: "ModelArguments"):
|
||||
for dtype_name, dtype in [("fp16", torch.float16), ("bf16", torch.bfloat16), ("fp32", torch.float32)]:
|
||||
setattr(config, dtype_name, getattr(config, "torch_dtype", None) == dtype)
|
||||
|
||||
_configure_rope(config, model_args, is_trainable)
|
||||
_configure_flashattn(model_args, config_kwargs)
|
||||
_configure_longlora(config, model_args, is_trainable)
|
||||
_configure_quantization(config, tokenizer, model_args, config_kwargs)
|
||||
|
||||
|
||||
def patch_model(model: "PreTrainedModel"):
|
||||
if "GenerationMixin" not in str(model.generate.__func__):
|
||||
@@ -177,15 +189,15 @@ def patch_model(model: "PreTrainedModel"):
|
||||
|
||||
|
||||
def patch_valuehead_model(model: "AutoModelForCausalLMWithValueHead"):
|
||||
def get_input_embeddings(self: "AutoModelForCausalLMWithValueHead") -> torch.nn.Module:
|
||||
return self.pretrained_model.get_input_embeddings()
|
||||
def tie_weights(self: "AutoModelForCausalLMWithValueHead") -> None:
|
||||
if isinstance(self.pretrained_model, PreTrainedModel):
|
||||
self.pretrained_model.tie_weights()
|
||||
|
||||
def get_input_embeddings(self: "AutoModelForCausalLMWithValueHead") -> torch.nn.Module:
|
||||
if isinstance(self.pretrained_model, PreTrainedModel):
|
||||
return self.pretrained_model.get_input_embeddings()
|
||||
|
||||
setattr(model, "get_input_embeddings", MethodType(get_input_embeddings, model))
|
||||
ignore_modules = [name for name, _ in model.named_parameters() if "pretrained_model" in name]
|
||||
setattr(model, "_keys_to_ignore_on_save", ignore_modules)
|
||||
setattr(model, "tie_weights", MethodType(lambda _: None, model)) # use empty method
|
||||
|
||||
|
||||
def patch_tokenizer(tokenizer: "PreTrainedTokenizer"):
|
||||
if "PreTrainedTokenizerBase" not in str(tokenizer._pad.__func__):
|
||||
tokenizer._pad = MethodType(PreTrainedTokenizerBase._pad, tokenizer)
|
||||
setattr(model, "tie_weights", MethodType(tie_weights, model))
|
||||
setattr(model, "get_input_embeddings", MethodType(get_input_embeddings, model))
|
||||
|
||||
Reference in New Issue
Block a user