mirror of
https://github.com/hiyouga/LLaMA-Factory.git
synced 2025-12-17 20:30:36 +08:00
Initial commit
This commit is contained in:
51
src/utils/pairwise.py
Normal file
51
src/utils/pairwise.py
Normal file
@@ -0,0 +1,51 @@
|
||||
import torch
|
||||
from typing import Dict, Sequence, Union
|
||||
|
||||
from .data_collator import DataCollatorForLLaMA
|
||||
|
||||
from .peft_trainer import PeftTrainer
|
||||
|
||||
from .other import get_logger
|
||||
|
||||
logger = get_logger(__name__)
|
||||
|
||||
|
||||
class PairwiseDataCollatorForLLaMA(DataCollatorForLLaMA):
|
||||
r"""
|
||||
Data collator for pairwise data.
|
||||
"""
|
||||
|
||||
def __call__(self, features: Sequence[Dict[str, Union[torch.Tensor, Sequence[int]]]]) -> Dict[str, torch.Tensor]:
|
||||
r"""
|
||||
Pads batched data to the longest sequence in the batch.
|
||||
|
||||
We generate 2 * n examples where the first n examples represent chosen examples and
|
||||
the last n examples represent rejected examples.
|
||||
"""
|
||||
features = [{"input_ids": feature[key]} for key in ("accept_ids", "reject_ids") for feature in features]
|
||||
return super().__call__(features)
|
||||
|
||||
|
||||
class PairwiseTrainerForLLaMA(PeftTrainer):
|
||||
r"""
|
||||
Inherits PeftTrainer to compute pairwise loss.
|
||||
"""
|
||||
|
||||
def __init__(self, *args, **kwargs):
|
||||
super().__init__(*args, **kwargs)
|
||||
self.can_return_loss = True # override property to return eval_loss
|
||||
|
||||
def compute_loss(self, model, inputs, return_outputs=False):
|
||||
r"""
|
||||
Computes pairwise loss. The first n examples are chosen and the last n examples are rejected.
|
||||
|
||||
We use score on the EOS token to represent reward of the whole sentence.
|
||||
|
||||
Subclass and override to inject custom behavior. It should not be directly used by external scripts.
|
||||
"""
|
||||
batch_size = inputs["input_ids"].size(0) // 2
|
||||
_, _, values = model(**inputs)
|
||||
r_accept, r_reject = values[:, -1].split(batch_size, dim=0)
|
||||
loss = -torch.log(torch.sigmoid(r_accept - r_reject)).mean()
|
||||
outputs = {"r_accept": r_accept, "r_reject": r_reject}
|
||||
return (loss, outputs) if return_outputs else loss
|
||||
Reference in New Issue
Block a user