mirror of
https://github.com/hiyouga/LLaMA-Factory.git
synced 2025-12-17 12:20:37 +08:00
Initial commit
This commit is contained in:
95
src/train_sft.py
Normal file
95
src/train_sft.py
Normal file
@@ -0,0 +1,95 @@
|
||||
# coding=utf-8
|
||||
# Implements several parameter-efficient supervised fine-tuning method for LLaMA.
|
||||
# This code is inspired by
|
||||
# https://github.com/huggingface/transformers/blob/v4.29.2/examples/pytorch/summarization/run_summarization.py
|
||||
|
||||
|
||||
from utils import (
|
||||
load_pretrained,
|
||||
prepare_args,
|
||||
prepare_data,
|
||||
preprocess_data,
|
||||
DataCollatorForLLaMA,
|
||||
Seq2SeqTrainerForLLaMA,
|
||||
ComputeMetrics,
|
||||
get_logits_processor,
|
||||
plot_loss
|
||||
)
|
||||
|
||||
|
||||
def main():
|
||||
|
||||
# Prepare pretrained model and dataset
|
||||
model_args, data_args, training_args, finetuning_args = prepare_args(stage="sft")
|
||||
dataset = prepare_data(model_args, data_args)
|
||||
model, tokenizer = load_pretrained(model_args, finetuning_args, training_args.do_train, stage="sft")
|
||||
dataset = preprocess_data(dataset, tokenizer, data_args, training_args, stage="sft")
|
||||
data_collator = DataCollatorForLLaMA(tokenizer, model, data_args.ignore_pad_token_for_loss)
|
||||
|
||||
# Override the decoding parameters of Seq2SeqTrainer
|
||||
training_args.generation_max_length = training_args.generation_max_length if \
|
||||
training_args.generation_max_length is not None else data_args.max_target_length
|
||||
training_args.generation_num_beams = data_args.num_beams if \
|
||||
data_args.num_beams is not None else training_args.generation_num_beams
|
||||
|
||||
# Split the dataset
|
||||
if training_args.do_train:
|
||||
if data_args.dev_ratio > 1e-6:
|
||||
dataset = dataset.train_test_split(test_size=data_args.dev_ratio)
|
||||
trainer_kwargs = {"train_dataset": dataset["train"], "eval_dataset": dataset["test"]}
|
||||
else:
|
||||
trainer_kwargs = {"train_dataset": dataset}
|
||||
else: # do_eval or do_predict
|
||||
trainer_kwargs = {"eval_dataset": dataset}
|
||||
|
||||
# Initialize our Trainer
|
||||
trainer = Seq2SeqTrainerForLLaMA(
|
||||
finetuning_args=finetuning_args,
|
||||
model=model,
|
||||
args=training_args,
|
||||
tokenizer=tokenizer,
|
||||
data_collator=data_collator,
|
||||
compute_metrics=ComputeMetrics(tokenizer) if training_args.predict_with_generate else None,
|
||||
**trainer_kwargs
|
||||
)
|
||||
|
||||
# Keyword arguments for `model.generate`
|
||||
gen_kwargs = {
|
||||
"do_sample": True,
|
||||
"top_p": 0.7,
|
||||
"max_length": data_args.max_source_length + data_args.max_target_length + 1,
|
||||
"temperature": 0.95,
|
||||
"logits_processor": get_logits_processor()
|
||||
}
|
||||
|
||||
# Training
|
||||
if training_args.do_train:
|
||||
train_result = trainer.train()
|
||||
trainer.log_metrics("train", train_result.metrics)
|
||||
trainer.save_metrics("train", train_result.metrics)
|
||||
trainer.save_state()
|
||||
trainer.save_model()
|
||||
if trainer.is_world_process_zero() and finetuning_args.plot_loss:
|
||||
plot_loss(training_args, keys=["loss", "eval_loss"])
|
||||
|
||||
# Evaluation
|
||||
if training_args.do_eval:
|
||||
metrics = trainer.evaluate(metric_key_prefix="eval", **gen_kwargs)
|
||||
trainer.log_metrics("eval", metrics)
|
||||
trainer.save_metrics("eval", metrics)
|
||||
|
||||
# Predict
|
||||
if training_args.do_predict:
|
||||
predict_results = trainer.predict(dataset, metric_key_prefix="predict", **gen_kwargs)
|
||||
trainer.log_metrics("predict", predict_results.metrics)
|
||||
trainer.save_metrics("predict", predict_results.metrics)
|
||||
trainer.save_predictions(predict_results, tokenizer)
|
||||
|
||||
|
||||
def _mp_fn(index):
|
||||
# For xla_spawn (TPUs)
|
||||
main()
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
||||
Reference in New Issue
Block a user