mirror of
https://github.com/hiyouga/LLaMA-Factory.git
synced 2025-12-18 12:50:38 +08:00
support BLOOM models
This commit is contained in:
@@ -1,5 +1,5 @@
|
||||
# coding=utf-8
|
||||
# Implements parameter-efficient PPO training of fine-tuned LLaMA.
|
||||
# Implements parameter-efficient PPO training of fine-tuned models.
|
||||
# This code is inspired by:
|
||||
# https://github.com/lvwerra/trl/blob/main/examples/sentiment/scripts/gpt-neox-20b_peft/gpt-neo-20b_sentiment_peft.py
|
||||
|
||||
@@ -15,8 +15,8 @@ from utils import (
|
||||
prepare_data,
|
||||
load_pretrained,
|
||||
preprocess_data,
|
||||
DataCollatorForLLaMA,
|
||||
PPOTrainerForLLaMA,
|
||||
DynamicDataCollatorWithPadding,
|
||||
PPOPeftTrainer,
|
||||
LogCallback,
|
||||
plot_loss
|
||||
)
|
||||
@@ -29,7 +29,7 @@ def main():
|
||||
dataset = prepare_data(model_args, data_args)
|
||||
model, tokenizer = load_pretrained(model_args, finetuning_args, training_args.do_train, stage="ppo")
|
||||
dataset = preprocess_data(dataset, tokenizer, data_args, training_args, stage="ppo")
|
||||
data_collator = DataCollatorForLLaMA(tokenizer, model.pretrained_model)
|
||||
data_collator = DynamicDataCollatorWithPadding(tokenizer, model.pretrained_model)
|
||||
|
||||
ppo_config = PPOConfig(
|
||||
model_name=model_args.model_name_or_path,
|
||||
@@ -52,7 +52,7 @@ def main():
|
||||
)
|
||||
|
||||
# Initialize our Trainer
|
||||
ppo_trainer = PPOTrainerForLLaMA(
|
||||
ppo_trainer = PPOPeftTrainer(
|
||||
training_args=training_args,
|
||||
finetuning_args=finetuning_args,
|
||||
callbacks=[LogCallback()],
|
||||
|
||||
Reference in New Issue
Block a user