Former-commit-id: a61c8c4890962f3847b19eff31b170cd7f54316c
This commit is contained in:
hiyouga 2024-09-02 23:56:21 +08:00
parent 5af92971bc
commit 6e98872622
5 changed files with 57 additions and 38 deletions

View File

@ -30,19 +30,20 @@ def configure_liger_kernel(config: "PretrainedConfig", model_args: "ModelArgumen
if not is_trainable or not model_args.enable_liger_kernel: if not is_trainable or not model_args.enable_liger_kernel:
return return
if getattr(config, "model_type", None) == "gemma": model_type = getattr(config, "model_type", None)
if model_type == "gemma":
from liger_kernel.transformers import apply_liger_kernel_to_gemma as apply_liger_kernel from liger_kernel.transformers import apply_liger_kernel_to_gemma as apply_liger_kernel
elif getattr(config, "model_type", None) == "gemma2": elif model_type == "gemma2":
from liger_kernel.transformers import apply_liger_kernel_to_gemma2 as apply_liger_kernel from liger_kernel.transformers import apply_liger_kernel_to_gemma2 as apply_liger_kernel
elif getattr(config, "model_type", None) == "llama": elif model_type == "llama":
from liger_kernel.transformers import apply_liger_kernel_to_llama as apply_liger_kernel from liger_kernel.transformers import apply_liger_kernel_to_llama as apply_liger_kernel
elif getattr(config, "model_type", None) == "mistral": elif model_type == "mistral":
from liger_kernel.transformers import apply_liger_kernel_to_mistral as apply_liger_kernel from liger_kernel.transformers import apply_liger_kernel_to_mistral as apply_liger_kernel
elif getattr(config, "model_type", None) == "mixtral": elif model_type == "mixtral":
from liger_kernel.transformers import apply_liger_kernel_to_mixtral as apply_liger_kernel from liger_kernel.transformers import apply_liger_kernel_to_mixtral as apply_liger_kernel
elif getattr(config, "model_type", None) == "phi3": elif model_type == "phi3":
from liger_kernel.transformers import apply_liger_kernel_to_phi3 as apply_liger_kernel from liger_kernel.transformers import apply_liger_kernel_to_phi3 as apply_liger_kernel
elif getattr(config, "model_type", None) == "qwen2": elif model_type == "qwen2":
from liger_kernel.transformers import apply_liger_kernel_to_qwen2 as apply_liger_kernel from liger_kernel.transformers import apply_liger_kernel_to_qwen2 as apply_liger_kernel
else: else:
logger.warning("Current model does not support liger kernel.") logger.warning("Current model does not support liger kernel.")

View File

@ -28,19 +28,19 @@ def find_all_linear_modules(model: "PreTrainedModel", freeze_vision_tower: bool)
r""" r"""
Finds all available modules to apply lora or galore. Finds all available modules to apply lora or galore.
""" """
model_type = getattr(model.config, "model_type", None)
forbidden_modules = {"lm_head"} forbidden_modules = {"lm_head"}
if model_type == "chatglm":
if model.config.model_type == "chatglm":
forbidden_modules.add("output_layer") forbidden_modules.add("output_layer")
elif model.config.model_type == "internlm2": elif model_type == "internlm2":
forbidden_modules.add("output") forbidden_modules.add("output")
elif model.config.model_type in ["llava", "paligemma"]: elif model_type in ["llava", "paligemma"]:
forbidden_modules.add("multi_modal_projector") forbidden_modules.add("multi_modal_projector")
elif model.config.model_type == "qwen2_vl": elif model_type == "qwen2_vl":
forbidden_modules.add("merger") forbidden_modules.add("merger")
if freeze_vision_tower: if freeze_vision_tower:
if model.config.model_type == "qwen2_vl": if model_type == "qwen2_vl":
forbidden_modules.add("visual") forbidden_modules.add("visual")
else: else:
forbidden_modules.add("vision_tower") forbidden_modules.add("vision_tower")

View File

@ -39,42 +39,44 @@ def add_z3_leaf_module(model: "PreTrainedModel") -> None:
if not is_deepspeed_zero3_enabled(): if not is_deepspeed_zero3_enabled():
return return
if getattr(model.config, "model_type", None) == "dbrx": model_type = getattr(model.config, "model_type", None)
if model_type == "dbrx":
from transformers.models.dbrx.modeling_dbrx import DbrxFFN from transformers.models.dbrx.modeling_dbrx import DbrxFFN
_set_z3_leaf_modules(model, [DbrxFFN]) _set_z3_leaf_modules(model, [DbrxFFN])
if getattr(model.config, "model_type", None) == "jamba": if model_type == "jamba":
from transformers.models.jamba.modeling_jamba import JambaSparseMoeBlock from transformers.models.jamba.modeling_jamba import JambaSparseMoeBlock
_set_z3_leaf_modules(model, [JambaSparseMoeBlock]) _set_z3_leaf_modules(model, [JambaSparseMoeBlock])
if getattr(model.config, "model_type", None) == "jetmoe": if model_type == "jetmoe":
from transformers.models.jetmoe.modeling_jetmoe import JetMoeMoA, JetMoeMoE from transformers.models.jetmoe.modeling_jetmoe import JetMoeMoA, JetMoeMoE
_set_z3_leaf_modules(model, [JetMoeMoA, JetMoeMoE]) _set_z3_leaf_modules(model, [JetMoeMoA, JetMoeMoE])
if getattr(model.config, "model_type", None) == "mixtral": if model_type == "mixtral":
from transformers.models.mixtral.modeling_mixtral import MixtralSparseMoeBlock from transformers.models.mixtral.modeling_mixtral import MixtralSparseMoeBlock
_set_z3_leaf_modules(model, [MixtralSparseMoeBlock]) _set_z3_leaf_modules(model, [MixtralSparseMoeBlock])
if getattr(model.config, "model_type", None) == "qwen2moe": if model_type == "qwen2moe":
from transformers.models.qwen2_moe.modeling_qwen2_moe import Qwen2MoeSparseMoeBlock from transformers.models.qwen2_moe.modeling_qwen2_moe import Qwen2MoeSparseMoeBlock
_set_z3_leaf_modules(model, [Qwen2MoeSparseMoeBlock]) _set_z3_leaf_modules(model, [Qwen2MoeSparseMoeBlock])
def configure_moe(config: "PretrainedConfig", model_args: "ModelArguments", is_trainable: bool) -> None: def configure_moe(config: "PretrainedConfig", model_args: "ModelArguments", is_trainable: bool) -> None:
model_type = getattr(config, "model_type", None)
if model_args.moe_aux_loss_coef is not None: if model_args.moe_aux_loss_coef is not None:
if getattr(config, "model_type", None) in ["jamba", "mixtral", "qwen2_moe"]: if model_type in ["jamba", "mixtral", "qwen2_moe"]:
setattr(config, "router_aux_loss_coef", model_args.moe_aux_loss_coef) setattr(config, "router_aux_loss_coef", model_args.moe_aux_loss_coef)
elif getattr(config, "model_type", None) == "deepseek": elif model_type == "deepseek":
setattr(config, "aux_loss_alpha", model_args.moe_aux_loss_coef) setattr(config, "aux_loss_alpha", model_args.moe_aux_loss_coef)
elif getattr(config, "model_type", None) == "jetmoe": elif model_type == "jetmoe":
setattr(config, "aux_loss_coef", model_args.moe_aux_loss_coef) setattr(config, "aux_loss_coef", model_args.moe_aux_loss_coef)
if getattr(config, "model_type", None) in ["dbrx", "jamba", "jetmoe", "mixtral", "qwen2_moe"]: if model_type in ["dbrx", "jamba", "jetmoe", "mixtral", "qwen2_moe"]:
setattr(config, "output_router_logits", is_trainable) setattr(config, "output_router_logits", is_trainable)

View File

@ -91,9 +91,10 @@ def autocast_projector_dtype(model: "PreTrainedModel", model_args: "ModelArgumen
return output.to(model_args.compute_dtype) return output.to(model_args.compute_dtype)
if getattr(model, "quantization_method", None): if getattr(model, "quantization_method", None):
if getattr(model.config, "model_type", None) in ["llava", "paligemma"]: model_type = getattr(model.config, "model_type", None)
if model_type in ["llava", "paligemma"]:
mm_projector: "torch.nn.Module" = getattr(model, "multi_modal_projector") mm_projector: "torch.nn.Module" = getattr(model, "multi_modal_projector")
elif getattr(model.config, "model_type", None) == "qwen2_vl": elif model_type == "qwen2_vl":
mm_projector: "torch.nn.Module" = getattr(getattr(model, "visual"), "merger") mm_projector: "torch.nn.Module" = getattr(getattr(model, "visual"), "merger")
else: else:
return return
@ -106,7 +107,8 @@ def configure_visual_model(config: "PretrainedConfig") -> None:
r""" r"""
Patches VLMs before loading them. Patches VLMs before loading them.
""" """
if getattr(config, "model_type", None) == "llava": # required for ds zero3 and valuehead models model_type = getattr(config, "model_type", None)
if model_type == "llava": # required for ds zero3 and valuehead models
setattr(config, "hidden_size", getattr(config.text_config, "hidden_size", None)) setattr(config, "hidden_size", getattr(config.text_config, "hidden_size", None))
if getattr(config, "is_yi_vl_derived_model", None): if getattr(config, "is_yi_vl_derived_model", None):
@ -118,15 +120,16 @@ def get_forbidden_modules(config: "PretrainedConfig", finetuning_args: "Finetuni
r""" r"""
Freezes vision tower and language model for VLM full/freeze tuning. Freezes vision tower and language model for VLM full/freeze tuning.
""" """
model_type = getattr(config, "model_type", None)
forbidden_modules = set() forbidden_modules = set()
if getattr(config, "model_type", None) in ["llava", "paligemma"]: if model_type in ["llava", "paligemma"]:
if finetuning_args.freeze_vision_tower: if finetuning_args.freeze_vision_tower:
forbidden_modules.add("vision_tower") forbidden_modules.add("vision_tower")
if finetuning_args.train_mm_proj_only: if finetuning_args.train_mm_proj_only:
forbidden_modules.add("language_model") forbidden_modules.add("language_model")
elif getattr(config, "model_type", None) == "qwen2_vl": elif model_type == "qwen2_vl":
if finetuning_args.freeze_vision_tower: if finetuning_args.freeze_vision_tower:
forbidden_modules.add("visual") forbidden_modules.add("visual")
@ -140,13 +143,14 @@ def get_image_seqlen(config: "PretrainedConfig") -> int:
r""" r"""
Computes the number of special tokens per image. Computes the number of special tokens per image.
""" """
if getattr(config, "model_type", None) == "llava": model_type = getattr(config, "model_type", None)
if model_type == "llava":
image_seqlen = (config.vision_config.image_size // config.vision_config.patch_size) ** 2 image_seqlen = (config.vision_config.image_size // config.vision_config.patch_size) ** 2
if getattr(config, "vision_feature_select_strategy", "default") == "full": # add [CLS] token if getattr(config, "vision_feature_select_strategy", "default") == "full": # add [CLS] token
image_seqlen += 1 image_seqlen += 1
elif getattr(config, "model_type", None) == "paligemma": elif model_type == "paligemma":
image_seqlen = config.vision_config.num_image_tokens image_seqlen = config.vision_config.num_image_tokens
elif getattr(config, "model_type", None) == "qwen2_vl": # variable length elif model_type == "qwen2_vl": # variable length
image_seqlen = -1 image_seqlen = -1
return image_seqlen return image_seqlen
@ -158,12 +162,16 @@ def patch_target_modules(
r""" r"""
Freezes vision tower for VLM LoRA tuning. Freezes vision tower for VLM LoRA tuning.
""" """
if not finetuning_args.freeze_vision_tower: model_type = getattr(config, "model_type", None)
return target_modules if finetuning_args.freeze_vision_tower:
if model_type in ["llava", "paligemma"]:
if getattr(config, "model_type", None) in ["llava", "paligemma"]:
return "^(?!.*vision_tower).*(?:{}).*".format("|".join(target_modules)) return "^(?!.*vision_tower).*(?:{}).*".format("|".join(target_modules))
elif getattr(config, "model_type", None) == "qwen2_vl": elif model_type == "qwen2_vl":
return "^(?!.*visual).*(?:{}).*".format("|".join(target_modules)) return "^(?!.*visual).*(?:{}).*".format("|".join(target_modules))
else: else:
return target_modules return target_modules
else:
if model_type == "qwen2_vl":
return "^(?!.*patch_embed).*(?:{}).*".format("|".join(target_modules))
else:
return target_modules

View File

@ -45,6 +45,9 @@ if is_rouge_available():
def eval_logit_processor(logits: "torch.Tensor", labels: "torch.Tensor") -> "torch.Tensor": def eval_logit_processor(logits: "torch.Tensor", labels: "torch.Tensor") -> "torch.Tensor":
r"""
Computes the token with the largest likelihood to reduce memory footprint.
"""
if isinstance(logits, (list, tuple)): if isinstance(logits, (list, tuple)):
if logits[0].dim() == 3: # (batch_size, seq_len, vocab_size) if logits[0].dim() == 3: # (batch_size, seq_len, vocab_size)
logits = logits[0] logits = logits[0]
@ -59,6 +62,9 @@ def eval_logit_processor(logits: "torch.Tensor", labels: "torch.Tensor") -> "tor
@dataclass @dataclass
class ComputeAccuracy: class ComputeAccuracy:
r"""
Computes accuracy and supports `batch_eval_metrics`.
"""
def _dump(self) -> Optional[Dict[str, float]]: def _dump(self) -> Optional[Dict[str, float]]:
result = None result = None
if hasattr(self, "score_dict"): if hasattr(self, "score_dict"):
@ -84,6 +90,8 @@ class ComputeAccuracy:
@dataclass @dataclass
class ComputeSimilarity: class ComputeSimilarity:
r""" r"""
Computes text similarity scores and supports `batch_eval_metrics`.
Wraps the tokenizer into metric functions, used in CustomSeq2SeqTrainer. Wraps the tokenizer into metric functions, used in CustomSeq2SeqTrainer.
""" """