[misc] update format (#7277)

This commit is contained in:
hoshi-hiyouga
2025-03-13 02:53:08 +08:00
committed by GitHub
parent 4b9d8da5a4
commit 650a9a9057
62 changed files with 384 additions and 288 deletions

View File

@@ -1,3 +1,17 @@
# Copyright 2025 the LlamaFactory team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from .feedback import FeedbackDatasetProcessor
from .pairwise import PairwiseDatasetProcessor
from .pretrain import PretrainDatasetProcessor

View File

@@ -13,7 +13,6 @@
# limitations under the License.
from collections import defaultdict
from collections.abc import Sequence
from typing import TYPE_CHECKING, Any, Optional
from ...extras import logging
@@ -31,14 +30,14 @@ logger = logging.get_logger(__name__)
class FeedbackDatasetProcessor(DatasetProcessor):
def _encode_data_example(
self,
prompt: Sequence[dict[str, str]],
response: Sequence[dict[str, str]],
kl_response: Sequence[dict[str, str]],
prompt: list[dict[str, str]],
response: list[dict[str, str]],
kl_response: list[dict[str, str]],
system: Optional[str],
tools: Optional[str],
images: Sequence["ImageInput"],
videos: Sequence["VideoInput"],
audios: Sequence["AudioInput"],
images: list["ImageInput"],
videos: list["VideoInput"],
audios: list["AudioInput"],
) -> tuple[list[int], list[int], list[int], list[int], bool]:
if response[0]["content"]: # desired example
kto_tag = True

View File

@@ -13,7 +13,6 @@
# limitations under the License.
from collections import defaultdict
from collections.abc import Sequence
from typing import TYPE_CHECKING, Any, Optional
from ...extras import logging
@@ -31,13 +30,13 @@ logger = logging.get_logger(__name__)
class PairwiseDatasetProcessor(DatasetProcessor):
def _encode_data_example(
self,
prompt: Sequence[dict[str, str]],
response: Sequence[dict[str, str]],
prompt: list[dict[str, str]],
response: list[dict[str, str]],
system: Optional[str],
tools: Optional[str],
images: Sequence["ImageInput"],
videos: Sequence["VideoInput"],
audios: Sequence["AudioInput"],
images: list["ImageInput"],
videos: list["VideoInput"],
audios: list["AudioInput"],
) -> tuple[list[int], list[int], list[int], list[int]]:
chosen_messages = self.template.mm_plugin.process_messages(
prompt + [response[0]], images, videos, audios, self.processor

View File

@@ -1,4 +1,4 @@
# Copyright 2024 HuggingFace Inc. and the LlamaFactory team.
# Copyright 2025 HuggingFace Inc. and the LlamaFactory team.
#
# This code is inspired by the HuggingFace's transformers library.
# https://github.com/huggingface/transformers/blob/v4.40.0/examples/pytorch/language-modeling/run_clm.py

View File

@@ -14,7 +14,6 @@
import bisect
from abc import ABC, abstractmethod
from collections.abc import Sequence
from dataclasses import dataclass
from typing import TYPE_CHECKING, Any, Optional
@@ -46,7 +45,7 @@ class DatasetProcessor(ABC):
...
def search_for_fit(numbers: Sequence[int], capacity: int) -> int:
def search_for_fit(numbers: list[int], capacity: int) -> int:
r"""Find the index of largest number that fits into the knapsack with the given capacity."""
index = bisect.bisect(numbers, capacity)
return -1 if index == 0 else (index - 1)

View File

@@ -13,7 +13,6 @@
# limitations under the License.
from collections import defaultdict
from collections.abc import Sequence
from dataclasses import dataclass
from typing import TYPE_CHECKING, Any, Optional
@@ -33,13 +32,13 @@ logger = logging.get_logger(__name__)
class SupervisedDatasetProcessor(DatasetProcessor):
def _encode_data_example(
self,
prompt: Sequence[dict[str, str]],
response: Sequence[dict[str, str]],
prompt: list[dict[str, str]],
response: list[dict[str, str]],
system: Optional[str],
tools: Optional[str],
images: Sequence["ImageInput"],
videos: Sequence["VideoInput"],
audios: Sequence["AudioInput"],
images: list["ImageInput"],
videos: list["VideoInput"],
audios: list["AudioInput"],
) -> tuple[list[int], list[int]]:
messages = self.template.mm_plugin.process_messages(prompt + response, images, videos, audios, self.processor)
input_ids, labels = self.template.mm_plugin.process_token_ids(

View File

@@ -13,7 +13,6 @@
# limitations under the License.
from collections import defaultdict
from collections.abc import Sequence
from typing import TYPE_CHECKING, Any, Optional
from ...extras import logging
@@ -31,13 +30,13 @@ logger = logging.get_logger(__name__)
class UnsupervisedDatasetProcessor(DatasetProcessor):
def _encode_data_example(
self,
prompt: Sequence[dict[str, str]],
response: Sequence[dict[str, str]],
prompt: list[dict[str, str]],
response: list[dict[str, str]],
system: Optional[str],
tools: Optional[str],
images: Sequence["ImageInput"],
videos: Sequence["VideoInput"],
audios: Sequence["AudioInput"],
images: list["ImageInput"],
videos: list["VideoInput"],
audios: list["AudioInput"],
) -> tuple[list[int], list[int]]:
if len(response) == 1:
messages = prompt + response