mirror of
https://github.com/hiyouga/LLaMA-Factory.git
synced 2025-12-17 04:10:36 +08:00
format style
This commit is contained in:
@@ -1,6 +1,7 @@
|
||||
# Inspired by: https://github.com/huggingface/transformers/blob/v4.34.1/examples/pytorch/summarization/run_summarization.py
|
||||
|
||||
from typing import TYPE_CHECKING, Optional, List
|
||||
from typing import TYPE_CHECKING, List, Optional
|
||||
|
||||
from transformers import DataCollatorForSeq2Seq, Seq2SeqTrainingArguments
|
||||
|
||||
from ...data import get_dataset, split_dataset
|
||||
@@ -15,7 +16,8 @@ from ...train.utils import create_modelcard_and_push
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from transformers import TrainerCallback
|
||||
from ...hparams import ModelArguments, DataArguments, FinetuningArguments, GeneratingArguments
|
||||
|
||||
from ...hparams import DataArguments, FinetuningArguments, GeneratingArguments, ModelArguments
|
||||
|
||||
|
||||
def run_sft(
|
||||
@@ -24,29 +26,31 @@ def run_sft(
|
||||
training_args: "Seq2SeqTrainingArguments",
|
||||
finetuning_args: "FinetuningArguments",
|
||||
generating_args: "GeneratingArguments",
|
||||
callbacks: Optional[List["TrainerCallback"]] = None
|
||||
callbacks: Optional[List["TrainerCallback"]] = None,
|
||||
):
|
||||
model, tokenizer = load_model_and_tokenizer(model_args, finetuning_args, training_args.do_train)
|
||||
dataset = get_dataset(tokenizer, model_args, data_args, training_args, stage="sft")
|
||||
|
||||
if training_args.predict_with_generate:
|
||||
tokenizer.padding_side = "left" # use left-padding in generation
|
||||
tokenizer.padding_side = "left" # use left-padding in generation
|
||||
|
||||
if getattr(model, "is_quantized", False) and not training_args.do_train:
|
||||
setattr(model, "_hf_peft_config_loaded", True) # hack here: make model compatible with prediction
|
||||
setattr(model, "_hf_peft_config_loaded", True) # hack here: make model compatible with prediction
|
||||
|
||||
data_collator = DataCollatorForSeq2Seq(
|
||||
tokenizer=tokenizer,
|
||||
pad_to_multiple_of=8 if tokenizer.padding_side == "right" else None, # for shift short attention
|
||||
label_pad_token_id=IGNORE_INDEX if data_args.ignore_pad_token_for_loss else tokenizer.pad_token_id
|
||||
pad_to_multiple_of=8 if tokenizer.padding_side == "right" else None, # for shift short attention
|
||||
label_pad_token_id=IGNORE_INDEX if data_args.ignore_pad_token_for_loss else tokenizer.pad_token_id,
|
||||
)
|
||||
|
||||
# Override the decoding parameters of Seq2SeqTrainer
|
||||
training_args_dict = training_args.to_dict()
|
||||
training_args_dict.update(dict(
|
||||
generation_max_length=training_args.generation_max_length or data_args.cutoff_len,
|
||||
generation_num_beams=data_args.eval_num_beams or training_args.generation_num_beams
|
||||
))
|
||||
training_args_dict.update(
|
||||
dict(
|
||||
generation_max_length=training_args.generation_max_length or data_args.cutoff_len,
|
||||
generation_num_beams=data_args.eval_num_beams or training_args.generation_num_beams,
|
||||
)
|
||||
)
|
||||
training_args = Seq2SeqTrainingArguments(**training_args_dict)
|
||||
|
||||
# Initialize our Trainer
|
||||
@@ -57,7 +61,7 @@ def run_sft(
|
||||
data_collator=data_collator,
|
||||
callbacks=callbacks,
|
||||
compute_metrics=ComputeMetrics(tokenizer) if training_args.predict_with_generate else None,
|
||||
**split_dataset(dataset, data_args, training_args)
|
||||
**split_dataset(dataset, data_args, training_args),
|
||||
)
|
||||
|
||||
# Keyword arguments for `model.generate`
|
||||
@@ -79,7 +83,7 @@ def run_sft(
|
||||
# Evaluation
|
||||
if training_args.do_eval:
|
||||
metrics = trainer.evaluate(metric_key_prefix="eval", **gen_kwargs)
|
||||
if training_args.predict_with_generate: # eval_loss will be wrong if predict_with_generate is enabled
|
||||
if training_args.predict_with_generate: # eval_loss will be wrong if predict_with_generate is enabled
|
||||
metrics.pop("eval_loss", None)
|
||||
trainer.log_metrics("eval", metrics)
|
||||
trainer.save_metrics("eval", metrics)
|
||||
@@ -87,7 +91,7 @@ def run_sft(
|
||||
# Predict
|
||||
if training_args.do_predict:
|
||||
predict_results = trainer.predict(dataset, metric_key_prefix="predict", **gen_kwargs)
|
||||
if training_args.predict_with_generate: # predict_loss will be wrong if predict_with_generate is enabled
|
||||
if training_args.predict_with_generate: # predict_loss will be wrong if predict_with_generate is enabled
|
||||
predict_results.metrics.pop("predict_loss", None)
|
||||
trainer.log_metrics("predict", predict_results.metrics)
|
||||
trainer.save_metrics("predict", predict_results.metrics)
|
||||
|
||||
Reference in New Issue
Block a user