mirror of
https://github.com/hiyouga/LLaMA-Factory.git
synced 2025-12-16 11:50:35 +08:00
format style
This commit is contained in:
@@ -1,5 +1,5 @@
|
||||
from typing import Literal, Optional
|
||||
from dataclasses import dataclass, field
|
||||
from typing import Literal, Optional
|
||||
|
||||
|
||||
@dataclass
|
||||
@@ -8,80 +8,66 @@ class DataArguments:
|
||||
Arguments pertaining to what data we are going to input our model for training and evaluation.
|
||||
"""
|
||||
template: Optional[str] = field(
|
||||
default=None,
|
||||
metadata={"help": "Which template to use for constructing prompts in training and inference."}
|
||||
default=None, metadata={"help": "Which template to use for constructing prompts in training and inference."}
|
||||
)
|
||||
dataset: Optional[str] = field(
|
||||
default=None,
|
||||
metadata={"help": "The name of provided dataset(s) to use. Use commas to separate multiple datasets."}
|
||||
metadata={"help": "The name of provided dataset(s) to use. Use commas to separate multiple datasets."},
|
||||
)
|
||||
dataset_dir: Optional[str] = field(
|
||||
default="data",
|
||||
metadata={"help": "Path to the folder containing the datasets."}
|
||||
default="data", metadata={"help": "Path to the folder containing the datasets."}
|
||||
)
|
||||
split: Optional[str] = field(
|
||||
default="train",
|
||||
metadata={"help": "Which dataset split to use for training and evaluation."}
|
||||
default="train", metadata={"help": "Which dataset split to use for training and evaluation."}
|
||||
)
|
||||
cutoff_len: Optional[int] = field(
|
||||
default=1024,
|
||||
metadata={"help": "The maximum length of the model inputs after tokenization."}
|
||||
default=1024, metadata={"help": "The maximum length of the model inputs after tokenization."}
|
||||
)
|
||||
reserved_label_len: Optional[int] = field(
|
||||
default=1,
|
||||
metadata={"help": "The maximum length reserved for label after tokenization."}
|
||||
default=1, metadata={"help": "The maximum length reserved for label after tokenization."}
|
||||
)
|
||||
train_on_prompt: Optional[bool] = field(
|
||||
default=False,
|
||||
metadata={"help": "Whether to disable the mask on the prompt or not."}
|
||||
)
|
||||
streaming: Optional[bool] = field(
|
||||
default=False,
|
||||
metadata={"help": "Enable dataset streaming."}
|
||||
default=False, metadata={"help": "Whether to disable the mask on the prompt or not."}
|
||||
)
|
||||
streaming: Optional[bool] = field(default=False, metadata={"help": "Enable dataset streaming."})
|
||||
buffer_size: Optional[int] = field(
|
||||
default=16384,
|
||||
metadata={"help": "Size of the buffer to randomly sample examples from in dataset streaming."}
|
||||
default=16384, metadata={"help": "Size of the buffer to randomly sample examples from in dataset streaming."}
|
||||
)
|
||||
mix_strategy: Optional[Literal["concat", "interleave_under", "interleave_over"]] = field(
|
||||
default="concat",
|
||||
metadata={"help": "Strategy to use in dataset mixing (concat/interleave) (undersampling/oversampling)."}
|
||||
metadata={"help": "Strategy to use in dataset mixing (concat/interleave) (undersampling/oversampling)."},
|
||||
)
|
||||
interleave_probs: Optional[str] = field(
|
||||
default=None,
|
||||
metadata={"help": "Probabilities to sample data from datasets. Use commas to separate multiple datasets."}
|
||||
metadata={"help": "Probabilities to sample data from datasets. Use commas to separate multiple datasets."},
|
||||
)
|
||||
overwrite_cache: Optional[bool] = field(
|
||||
default=False,
|
||||
metadata={"help": "Overwrite the cached training and evaluation sets."}
|
||||
default=False, metadata={"help": "Overwrite the cached training and evaluation sets."}
|
||||
)
|
||||
preprocessing_num_workers: Optional[int] = field(
|
||||
default=None,
|
||||
metadata={"help": "The number of processes to use for the preprocessing."}
|
||||
default=None, metadata={"help": "The number of processes to use for the preprocessing."}
|
||||
)
|
||||
max_samples: Optional[int] = field(
|
||||
default=None,
|
||||
metadata={"help": "For debugging purposes, truncate the number of examples for each dataset."}
|
||||
default=None, metadata={"help": "For debugging purposes, truncate the number of examples for each dataset."}
|
||||
)
|
||||
eval_num_beams: Optional[int] = field(
|
||||
default=None,
|
||||
metadata={"help": "Number of beams to use for evaluation. This argument will be passed to `model.generate`"}
|
||||
metadata={"help": "Number of beams to use for evaluation. This argument will be passed to `model.generate`"},
|
||||
)
|
||||
ignore_pad_token_for_loss: Optional[bool] = field(
|
||||
default=True,
|
||||
metadata={"help": "Whether to ignore the tokens corresponding to padded labels in the loss computation or not."}
|
||||
metadata={
|
||||
"help": "Whether to ignore the tokens corresponding to padded labels in the loss computation or not."
|
||||
},
|
||||
)
|
||||
val_size: Optional[float] = field(
|
||||
default=0,
|
||||
metadata={"help": "Size of the development set, should be an integer or a float in range `[0,1)`."}
|
||||
default=0, metadata={"help": "Size of the development set, should be an integer or a float in range `[0,1)`."}
|
||||
)
|
||||
sft_packing: Optional[bool] = field(
|
||||
default=False,
|
||||
metadata={"help": "Packing the questions and answers in the supervised fine-tuning stage."}
|
||||
default=False, metadata={"help": "Packing the questions and answers in the supervised fine-tuning stage."}
|
||||
)
|
||||
cache_path: Optional[str] = field(
|
||||
default=None,
|
||||
metadata={"help": "Path to save or load the preprocessed datasets."}
|
||||
default=None, metadata={"help": "Path to save or load the preprocessed datasets."}
|
||||
)
|
||||
|
||||
def __post_init__(self):
|
||||
|
||||
Reference in New Issue
Block a user