format style

This commit is contained in:
hiyouga
2024-01-20 20:15:56 +08:00
parent f6d6e00337
commit 638234ceee
73 changed files with 1492 additions and 2325 deletions

View File

@@ -1,11 +1,16 @@
import math
from typing import Optional, Tuple
import torch
import torch.nn as nn
from typing import Optional, Tuple
from transformers.utils import logging
from transformers.models.llama.modeling_llama import (
Cache, LlamaAttention, LlamaFlashAttention2, apply_rotary_pos_emb, repeat_kv
Cache,
LlamaAttention,
LlamaFlashAttention2,
apply_rotary_pos_emb,
repeat_kv,
)
from transformers.utils import logging
logger = logging.get_logger(__name__)
@@ -19,7 +24,7 @@ def llama_torch_attn_forward(
position_ids: Optional[torch.LongTensor] = None,
past_key_value: Optional["Cache"] = None,
output_attentions: bool = False,
**kwargs
**kwargs,
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
bsz, q_len, _ = hidden_states.size()
@@ -45,15 +50,17 @@ def llama_torch_attn_forward(
key_states = repeat_kv(key_states, self.num_key_value_groups)
value_states = repeat_kv(value_states, self.num_key_value_groups)
if getattr(self.config, "group_size_ratio", None) and self.training: # shift
if getattr(self.config, "group_size_ratio", None) and self.training: # shift
groupsz = int(q_len * getattr(self.config, "group_size_ratio"))
assert q_len % groupsz == 0, "q_len {} should be divisible by group size {}.".format(q_len, groupsz)
num_groups = q_len // groupsz
def shift(state: torch.Tensor) -> torch.Tensor:
state = state.transpose(1, 2) # output: (bsz, seq_len, n_heads, head_dim)
state = torch.cat((
state[:, :, :self.num_heads//2], state[:, :, self.num_heads//2:].roll(-groupsz//2, dims=1)
), dim=2)
state = state.transpose(1, 2) # output: (bsz, seq_len, n_heads, head_dim)
state = torch.cat(
(state[:, :, : self.num_heads // 2], state[:, :, self.num_heads // 2 :].roll(-groupsz // 2, dims=1)),
dim=2,
)
return state.reshape(bsz * num_groups, groupsz, self.num_heads, self.head_dim).transpose(1, 2)
query_states, key_states, value_states = shift(query_states), shift(key_states), shift(value_states)
@@ -68,14 +75,17 @@ def llama_torch_attn_forward(
# upcast attention to fp32
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype)
attn_weights = nn.functional.dropout(attn_weights, p=self.attention_dropout, training=self.training)
attn_output = torch.matmul(attn_weights, value_states) # (bsz, :, seq_len, :) or (bsz*n_group, :, groupsz, :)
attn_output = torch.matmul(attn_weights, value_states) # (bsz, :, seq_len, :) or (bsz*n_group, :, groupsz, :)
attn_output = attn_output.transpose(1, 2).contiguous()
if getattr(self.config, "group_size_ratio", None) and self.training: # shift back
if getattr(self.config, "group_size_ratio", None) and self.training: # shift back
attn_output.reshape(bsz, q_len, self.num_heads, self.head_dim)
attn_output = torch.cat((
attn_output[:, :, :self.num_heads//2], attn_output[:, :, self.num_heads//2:].roll(groupsz//2, dims=1)
))
attn_output = torch.cat(
(
attn_output[:, :, : self.num_heads // 2],
attn_output[:, :, self.num_heads // 2 :].roll(groupsz // 2, dims=1),
)
)
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
attn_output = self.o_proj(attn_output)
@@ -94,7 +104,7 @@ def llama_flash_attn_forward(
position_ids: Optional[torch.LongTensor] = None,
past_key_value: Optional[Tuple[torch.Tensor]] = None,
output_attentions: bool = False,
**kwargs
**kwargs,
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
# LlamaFlashAttention2 attention does not support output_attentions
output_attentions = False
@@ -124,9 +134,9 @@ def llama_flash_attn_forward(
key_states = repeat_kv(key_states, self.num_key_value_groups)
value_states = repeat_kv(value_states, self.num_key_value_groups)
query_states = query_states.transpose(1, 2) # (bsz, seq_len, n_heads, head_dim)
key_states = key_states.transpose(1, 2) # (bsz, seq_len, n_heads, head_dim)
value_states = value_states.transpose(1, 2) # (bsz, seq_len, n_heads, head_dim)
query_states = query_states.transpose(1, 2) # (bsz, seq_len, n_heads, head_dim)
key_states = key_states.transpose(1, 2) # (bsz, seq_len, n_heads, head_dim)
value_states = value_states.transpose(1, 2) # (bsz, seq_len, n_heads, head_dim)
dropout_rate = self.attention_dropout if self.training else 0.0
@@ -144,14 +154,16 @@ def llama_flash_attn_forward(
key_states = key_states.to(target_dtype)
value_states = value_states.to(target_dtype)
if getattr(self.config, "group_size_ratio", None) and self.training: # shift
if getattr(self.config, "group_size_ratio", None) and self.training: # shift
groupsz = int(q_len * getattr(self.config, "group_size_ratio"))
assert q_len % groupsz == 0, "q_len {} should be divisible by group size {}.".format(q_len, groupsz)
num_groups = q_len // groupsz
def shift(state: torch.Tensor) -> torch.Tensor:
state = torch.cat((
state[:, :, :self.num_heads//2], state[:, :, self.num_heads//2:].roll(-groupsz//2, dims=1)
), dim=2)
state = torch.cat(
(state[:, :, : self.num_heads // 2], state[:, :, self.num_heads // 2 :].roll(-groupsz // 2, dims=1)),
dim=2,
)
return state.reshape(bsz * num_groups, groupsz, self.num_heads, self.head_dim)
query_states, key_states, value_states = shift(query_states), shift(key_states), shift(value_states)
@@ -162,11 +174,14 @@ def llama_flash_attn_forward(
query_states, key_states, value_states, attention_mask, q_len, dropout=dropout_rate
)
if getattr(self.config, "group_size_ratio", None) and self.training: # shift back
if getattr(self.config, "group_size_ratio", None) and self.training: # shift back
attn_output.reshape(bsz, q_len, self.num_heads, self.head_dim)
attn_output = torch.cat((
attn_output[:, :, :self.num_heads//2], attn_output[:, :, self.num_heads//2:].roll(groupsz//2, dims=1)
))
attn_output = torch.cat(
(
attn_output[:, :, : self.num_heads // 2],
attn_output[:, :, self.num_heads // 2 :].roll(groupsz // 2, dims=1),
)
)
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size).contiguous()
attn_output = self.o_proj(attn_output)