mirror of
https://github.com/hiyouga/LLaMA-Factory.git
synced 2025-08-23 22:32:54 +08:00
match api with OpenAI format
Former-commit-id: 76ecb8c222cec34fa6dbcef71e3907c95f67c22f
This commit is contained in:
parent
993d005242
commit
620cd2eb7e
228
src/api_demo.py
228
src/api_demo.py
@ -2,157 +2,157 @@
|
|||||||
# Implements API for fine-tuned models.
|
# Implements API for fine-tuned models.
|
||||||
# Usage: python api_demo.py --model_name_or_path path_to_model --checkpoint_dir path_to_checkpoint
|
# Usage: python api_demo.py --model_name_or_path path_to_model --checkpoint_dir path_to_checkpoint
|
||||||
|
|
||||||
# Request:
|
|
||||||
# curl http://127.0.0.1:8000 --header 'Content-Type: application/json' --data '{"prompt": "Hello there!", "history": []}'
|
|
||||||
|
|
||||||
# Response:
|
|
||||||
# {
|
|
||||||
# "response": "'Hi there!'",
|
|
||||||
# "history": "[('Hello there!', 'Hi there!')]",
|
|
||||||
# "status": 200,
|
|
||||||
# "time": "2000-00-00 00:00:00"
|
|
||||||
# }
|
|
||||||
|
|
||||||
|
|
||||||
import json
|
import json
|
||||||
import datetime
|
import time
|
||||||
import torch
|
import torch
|
||||||
import uvicorn
|
import uvicorn
|
||||||
|
from fastapi import FastAPI
|
||||||
from threading import Thread
|
from threading import Thread
|
||||||
from fastapi import FastAPI, Request
|
from contextlib import asynccontextmanager
|
||||||
from starlette.responses import StreamingResponse
|
|
||||||
|
from pydantic import BaseModel, Field
|
||||||
from transformers import TextIteratorStreamer
|
from transformers import TextIteratorStreamer
|
||||||
|
from starlette.responses import StreamingResponse
|
||||||
|
from typing import Any, Dict, List, Literal, Optional, Union
|
||||||
|
|
||||||
from utils import Template, load_pretrained, prepare_infer_args, get_logits_processor
|
from utils import (
|
||||||
|
Template,
|
||||||
|
load_pretrained,
|
||||||
|
prepare_infer_args,
|
||||||
|
get_logits_processor
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
def torch_gc():
|
@asynccontextmanager
|
||||||
|
async def lifespan(app: FastAPI): # collects GPU memory
|
||||||
|
yield
|
||||||
if torch.cuda.is_available():
|
if torch.cuda.is_available():
|
||||||
num_gpus = torch.cuda.device_count()
|
|
||||||
for device_id in range(num_gpus):
|
|
||||||
with torch.cuda.device(device_id):
|
|
||||||
torch.cuda.empty_cache()
|
torch.cuda.empty_cache()
|
||||||
torch.cuda.ipc_collect()
|
torch.cuda.ipc_collect()
|
||||||
|
|
||||||
|
|
||||||
app = FastAPI()
|
app = FastAPI(lifespan=lifespan)
|
||||||
|
|
||||||
|
|
||||||
@app.post("/v1/chat/completions")
|
class ChatMessage(BaseModel):
|
||||||
async def create_item(request: Request):
|
role: Literal["system", "user", "assistant"]
|
||||||
global model, tokenizer
|
content: str
|
||||||
|
|
||||||
json_post_raw = await request.json()
|
|
||||||
prompt = json_post_raw.get("messages")[-1]["content"]
|
|
||||||
history = json_post_raw.get("messages")[:-1]
|
|
||||||
max_token = json_post_raw.get("max_tokens", None)
|
|
||||||
top_p = json_post_raw.get("top_p", None)
|
|
||||||
temperature = json_post_raw.get("temperature", None)
|
|
||||||
stream = check_stream(json_post_raw.get("stream"))
|
|
||||||
|
|
||||||
if stream:
|
class DeltaMessage(BaseModel):
|
||||||
generate = predict(prompt, max_token, top_p, temperature, history)
|
role: Optional[Literal["system", "user", "assistant"]] = None
|
||||||
return StreamingResponse(generate, media_type="text/event-stream")
|
content: Optional[str] = None
|
||||||
|
|
||||||
input_ids = tokenizer([prompt_template.get_prompt(prompt, history, source_prefix)], return_tensors="pt")[
|
|
||||||
"input_ids"]
|
class ChatCompletionRequest(BaseModel):
|
||||||
input_ids = input_ids.to(model.device)
|
model: str
|
||||||
|
messages: List[ChatMessage]
|
||||||
|
temperature: Optional[float] = None
|
||||||
|
top_p: Optional[float] = None
|
||||||
|
max_new_tokens: Optional[int] = None
|
||||||
|
stream: Optional[bool] = False
|
||||||
|
|
||||||
|
|
||||||
|
class ChatCompletionResponseChoice(BaseModel):
|
||||||
|
index: int
|
||||||
|
message: ChatMessage
|
||||||
|
finish_reason: Literal["stop", "length"]
|
||||||
|
|
||||||
|
|
||||||
|
class ChatCompletionResponseStreamChoice(BaseModel):
|
||||||
|
index: int
|
||||||
|
delta: DeltaMessage
|
||||||
|
finish_reason: Optional[Literal["stop", "length"]]
|
||||||
|
|
||||||
|
|
||||||
|
class ChatCompletionResponse(BaseModel):
|
||||||
|
model: str
|
||||||
|
object: str
|
||||||
|
choices: List[Union[ChatCompletionResponseChoice, ChatCompletionResponseStreamChoice]]
|
||||||
|
created: Optional[int] = Field(default_factory=lambda: int(time.time()))
|
||||||
|
|
||||||
|
|
||||||
|
@app.post("/v1/chat/completions", response_model=ChatCompletionResponse)
|
||||||
|
async def create_chat_completion(request: ChatCompletionRequest):
|
||||||
|
global model, tokenizer, source_prefix
|
||||||
|
|
||||||
|
query = request.messages[-1].content
|
||||||
|
prev_messages = request.messages[:-1]
|
||||||
|
if len(prev_messages) > 0 and prev_messages[0].role == "system":
|
||||||
|
source_prefix = prev_messages.pop(0).content
|
||||||
|
|
||||||
|
history = []
|
||||||
|
if len(prev_messages) % 2 == 0:
|
||||||
|
for i in range(0, len(prev_messages), 2):
|
||||||
|
if prev_messages[i].role == "user" and prev_messages[i+1].role == "assistant":
|
||||||
|
history.append([prev_messages[i].content, prev_messages[i+1].content])
|
||||||
|
|
||||||
|
inputs = tokenizer([prompt_template.get_prompt(query, history, source_prefix)], return_tensors="pt")
|
||||||
|
inputs = inputs.to(model.device)
|
||||||
|
|
||||||
gen_kwargs = generating_args.to_dict()
|
gen_kwargs = generating_args.to_dict()
|
||||||
gen_kwargs["input_ids"] = input_ids
|
gen_kwargs.update({
|
||||||
gen_kwargs["logits_processor"] = get_logits_processor()
|
"input_ids": inputs["input_ids"],
|
||||||
gen_kwargs["max_new_tokens"] = max_token if max_token else gen_kwargs["max_new_tokens"]
|
"temperature": request.temperature if request.temperature else gen_kwargs["temperature"],
|
||||||
gen_kwargs["top_p"] = top_p if top_p else gen_kwargs["top_p"]
|
"top_p": request.top_p if request.top_p else gen_kwargs["top_p"],
|
||||||
gen_kwargs["temperature"] = temperature if temperature else gen_kwargs["temperature"]
|
"max_new_tokens": request.max_new_tokens if request.max_new_tokens else gen_kwargs["max_new_tokens"],
|
||||||
|
"logits_processor": get_logits_processor()
|
||||||
|
})
|
||||||
|
|
||||||
|
if request.stream:
|
||||||
|
generate = predict(gen_kwargs, request.model)
|
||||||
|
return StreamingResponse(generate, media_type="text/event-stream")
|
||||||
|
|
||||||
generation_output = model.generate(**gen_kwargs)
|
generation_output = model.generate(**gen_kwargs)
|
||||||
|
outputs = generation_output.tolist()[0][len(inputs["input_ids"][0]):]
|
||||||
outputs = generation_output.tolist()[0][len(input_ids[0]):]
|
|
||||||
response = tokenizer.decode(outputs, skip_special_tokens=True)
|
response = tokenizer.decode(outputs, skip_special_tokens=True)
|
||||||
|
|
||||||
now = datetime.datetime.now()
|
choice_data = ChatCompletionResponseChoice(
|
||||||
time = now.strftime("%Y-%m-%d %H:%M:%S")
|
index=0,
|
||||||
answer = {
|
message=ChatMessage(role="assistant", content=response),
|
||||||
"choices": [
|
finish_reason="stop"
|
||||||
{
|
|
||||||
"message": {
|
|
||||||
"role": "assistant",
|
|
||||||
"content": response
|
|
||||||
}
|
|
||||||
}
|
|
||||||
]
|
|
||||||
}
|
|
||||||
|
|
||||||
log = (
|
|
||||||
"["
|
|
||||||
+ time
|
|
||||||
+ "] "
|
|
||||||
+ "\", prompt:\""
|
|
||||||
+ prompt
|
|
||||||
+ "\", response:\""
|
|
||||||
+ repr(response)
|
|
||||||
+ "\""
|
|
||||||
)
|
)
|
||||||
print(log)
|
|
||||||
torch_gc()
|
|
||||||
|
|
||||||
return answer
|
return ChatCompletionResponse(model=request.model, choices=[choice_data], object="chat.completion")
|
||||||
|
|
||||||
|
|
||||||
def check_stream(stream):
|
async def predict(gen_kwargs: Dict[str, Any], model_id: str):
|
||||||
if isinstance(stream, bool):
|
|
||||||
# stream 是布尔类型,直接使用
|
|
||||||
stream_value = stream
|
|
||||||
else:
|
|
||||||
# 不是布尔类型,尝试进行类型转换
|
|
||||||
if isinstance(stream, str):
|
|
||||||
stream = stream.lower()
|
|
||||||
if stream in ["true", "false"]:
|
|
||||||
# 使用字符串值转换为布尔值
|
|
||||||
stream_value = stream == "true"
|
|
||||||
else:
|
|
||||||
# 非法的字符串值
|
|
||||||
stream_value = False
|
|
||||||
else:
|
|
||||||
# 非布尔类型也非字符串类型
|
|
||||||
stream_value = False
|
|
||||||
return stream_value
|
|
||||||
|
|
||||||
|
|
||||||
async def predict(query, max_length, top_p, temperature, history):
|
|
||||||
global model, tokenizer
|
global model, tokenizer
|
||||||
input_ids = tokenizer([prompt_template.get_prompt(query, history, source_prefix)], return_tensors="pt")["input_ids"]
|
|
||||||
input_ids = input_ids.to(model.device)
|
|
||||||
|
|
||||||
streamer = TextIteratorStreamer(tokenizer, timeout=60.0, skip_prompt=True, skip_special_tokens=True)
|
streamer = TextIteratorStreamer(tokenizer, timeout=60.0, skip_prompt=True, skip_special_tokens=True)
|
||||||
|
gen_kwargs["streamer"] = streamer
|
||||||
gen_kwargs = {
|
|
||||||
"input_ids": input_ids,
|
|
||||||
"do_sample": generating_args.do_sample,
|
|
||||||
"top_p": top_p,
|
|
||||||
"temperature": temperature,
|
|
||||||
"num_beams": generating_args.num_beams,
|
|
||||||
"max_length": max_length,
|
|
||||||
"repetition_penalty": generating_args.repetition_penalty,
|
|
||||||
"logits_processor": get_logits_processor(),
|
|
||||||
"streamer": streamer
|
|
||||||
}
|
|
||||||
|
|
||||||
thread = Thread(target=model.generate, kwargs=gen_kwargs)
|
thread = Thread(target=model.generate, kwargs=gen_kwargs)
|
||||||
thread.start()
|
thread.start()
|
||||||
|
|
||||||
|
choice_data = ChatCompletionResponseStreamChoice(
|
||||||
|
index=0,
|
||||||
|
delta=DeltaMessage(role="assistant"),
|
||||||
|
finish_reason=None
|
||||||
|
)
|
||||||
|
chunk = ChatCompletionResponse(model=model_id, choices=[choice_data], object = "chat.completion.chunk")
|
||||||
|
yield "data: {}\n\n".format(chunk.json(exclude_unset=True, ensure_ascii=False))
|
||||||
|
|
||||||
for new_text in streamer:
|
for new_text in streamer:
|
||||||
answer = {
|
if len(new_text) == 0:
|
||||||
"choices": [
|
continue
|
||||||
{
|
|
||||||
"message": {
|
choice_data = ChatCompletionResponseStreamChoice(
|
||||||
"role": "assistant",
|
index=0,
|
||||||
"content": new_text
|
delta=DeltaMessage(content=new_text),
|
||||||
}
|
finish_reason=None
|
||||||
}
|
)
|
||||||
]
|
chunk = ChatCompletionResponse(model=model_id, choices=[choice_data], object = "chat.completion.chunk")
|
||||||
}
|
yield "data: {}\n\n".format(chunk.json(exclude_unset=True, ensure_ascii=False))
|
||||||
yield "data: " + json.dumps(answer) + '\n\n'
|
|
||||||
|
choice_data = ChatCompletionResponseStreamChoice(
|
||||||
|
index=0,
|
||||||
|
delta=DeltaMessage(),
|
||||||
|
finish_reason="stop"
|
||||||
|
)
|
||||||
|
chunk = ChatCompletionResponse(model=model_id, choices=[choice_data], object = "chat.completion.chunk")
|
||||||
|
yield "data: {}\n\n".format(chunk.json(exclude_unset=True, ensure_ascii=False))
|
||||||
|
|
||||||
|
|
||||||
if __name__ == "__main__":
|
if __name__ == "__main__":
|
||||||
|
@ -18,7 +18,6 @@ def main():
|
|||||||
model_args, data_args, finetuning_args, generating_args = prepare_infer_args()
|
model_args, data_args, finetuning_args, generating_args = prepare_infer_args()
|
||||||
model, tokenizer = load_pretrained(model_args, finetuning_args)
|
model, tokenizer = load_pretrained(model_args, finetuning_args)
|
||||||
|
|
||||||
model_name = "BLOOM" if "bloom" in model_args.model_name_or_path else "LLaMA"
|
|
||||||
prompt_template = Template(data_args.prompt_template)
|
prompt_template = Template(data_args.prompt_template)
|
||||||
source_prefix = data_args.source_prefix if data_args.source_prefix else ""
|
source_prefix = data_args.source_prefix if data_args.source_prefix else ""
|
||||||
|
|
||||||
@ -29,34 +28,39 @@ def main():
|
|||||||
streamer = TextIteratorStreamer(tokenizer, timeout=60.0, skip_prompt=True, skip_special_tokens=True)
|
streamer = TextIteratorStreamer(tokenizer, timeout=60.0, skip_prompt=True, skip_special_tokens=True)
|
||||||
|
|
||||||
gen_kwargs = generating_args.to_dict()
|
gen_kwargs = generating_args.to_dict()
|
||||||
gen_kwargs["input_ids"] = input_ids
|
gen_kwargs.update({
|
||||||
gen_kwargs["logits_processor"] = get_logits_processor()
|
"input_ids": input_ids,
|
||||||
gen_kwargs["streamer"] = streamer
|
"logits_processor": get_logits_processor(),
|
||||||
|
"streamer": streamer
|
||||||
|
})
|
||||||
|
|
||||||
thread = Thread(target=model.generate, kwargs=gen_kwargs)
|
thread = Thread(target=model.generate, kwargs=gen_kwargs)
|
||||||
thread.start()
|
thread.start()
|
||||||
|
|
||||||
print("{}: ".format(model_name), end="", flush=True)
|
print("Assistant: ", end="", flush=True)
|
||||||
|
|
||||||
response = ""
|
response = ""
|
||||||
for new_text in streamer:
|
for new_text in streamer:
|
||||||
print(new_text, end="", flush=True)
|
print(new_text, end="", flush=True)
|
||||||
response += new_text
|
response += new_text
|
||||||
print()
|
print()
|
||||||
|
|
||||||
history = history + [(query, response)]
|
history = history + [(query, response)]
|
||||||
return history
|
return history
|
||||||
|
|
||||||
history = []
|
history = []
|
||||||
print("欢迎使用 {} 模型,输入内容即可对话,clear清空对话历史,stop终止程序".format(model_name))
|
print("Welcome to the CLI application, use `clear` to remove the history, use `exit` to exit the application.")
|
||||||
|
|
||||||
while True:
|
while True:
|
||||||
try:
|
try:
|
||||||
query = input("\nInput: ")
|
query = input("\nUser: ")
|
||||||
except UnicodeDecodeError:
|
except UnicodeDecodeError:
|
||||||
print("Detected decoding error at the inputs, please set the terminal encoding to utf-8.")
|
print("Detected decoding error at the inputs, please set the terminal encoding to utf-8.")
|
||||||
continue
|
continue
|
||||||
except Exception:
|
except Exception:
|
||||||
raise
|
raise
|
||||||
|
|
||||||
if query.strip() == "stop":
|
if query.strip() == "exit":
|
||||||
break
|
break
|
||||||
|
|
||||||
if query.strip() == "clear":
|
if query.strip() == "clear":
|
||||||
|
@ -285,6 +285,10 @@ class GeneratingArguments:
|
|||||||
default=1.0,
|
default=1.0,
|
||||||
metadata={"help": "The parameter for repetition penalty. 1.0 means no penalty."}
|
metadata={"help": "The parameter for repetition penalty. 1.0 means no penalty."}
|
||||||
)
|
)
|
||||||
|
length_penalty: Optional[float] = field(
|
||||||
|
default=1.0,
|
||||||
|
metadata={"help": "Exponential penalty to the length that is used with beam-based generation."}
|
||||||
|
)
|
||||||
|
|
||||||
def to_dict(self) -> Dict[str, Any]:
|
def to_dict(self) -> Dict[str, Any]:
|
||||||
return asdict(self)
|
return asdict(self)
|
||||||
|
@ -77,7 +77,7 @@ def parse_text(text): # copy from https://github.com/GaiZhenbiao/ChuanhuChatGPT
|
|||||||
return text
|
return text
|
||||||
|
|
||||||
|
|
||||||
def predict(query, chatbot, max_length, top_p, temperature, history):
|
def predict(query, chatbot, max_new_tokens, top_p, temperature, history):
|
||||||
chatbot.append((parse_text(query), ""))
|
chatbot.append((parse_text(query), ""))
|
||||||
|
|
||||||
input_ids = tokenizer([prompt_template.get_prompt(query, history, source_prefix)], return_tensors="pt")["input_ids"]
|
input_ids = tokenizer([prompt_template.get_prompt(query, history, source_prefix)], return_tensors="pt")["input_ids"]
|
||||||
@ -85,17 +85,15 @@ def predict(query, chatbot, max_length, top_p, temperature, history):
|
|||||||
|
|
||||||
streamer = TextIteratorStreamer(tokenizer, timeout=60.0, skip_prompt=True, skip_special_tokens=True)
|
streamer = TextIteratorStreamer(tokenizer, timeout=60.0, skip_prompt=True, skip_special_tokens=True)
|
||||||
|
|
||||||
gen_kwargs = {
|
gen_kwargs = generating_args.to_dict()
|
||||||
|
gen_kwargs.update({
|
||||||
"input_ids": input_ids,
|
"input_ids": input_ids,
|
||||||
"do_sample": generating_args.do_sample,
|
|
||||||
"top_p": top_p,
|
"top_p": top_p,
|
||||||
"temperature": temperature,
|
"temperature": temperature,
|
||||||
"num_beams": generating_args.num_beams,
|
"max_new_tokens": max_new_tokens,
|
||||||
"max_length": max_length,
|
|
||||||
"repetition_penalty": generating_args.repetition_penalty,
|
|
||||||
"logits_processor": get_logits_processor(),
|
"logits_processor": get_logits_processor(),
|
||||||
"streamer": streamer
|
"streamer": streamer
|
||||||
}
|
})
|
||||||
|
|
||||||
thread = Thread(target=model.generate, kwargs=gen_kwargs)
|
thread = Thread(target=model.generate, kwargs=gen_kwargs)
|
||||||
thread.start()
|
thread.start()
|
||||||
@ -137,13 +135,16 @@ with gr.Blocks() as demo:
|
|||||||
|
|
||||||
with gr.Column(scale=1):
|
with gr.Column(scale=1):
|
||||||
emptyBtn = gr.Button("Clear History")
|
emptyBtn = gr.Button("Clear History")
|
||||||
max_length = gr.Slider(0, 2048, value=1024, step=1.0, label="Maximum length", interactive=True)
|
max_new_tokens = gr.Slider(10, 2048, value=generating_args.max_new_tokens, step=1.0,
|
||||||
top_p = gr.Slider(0, 1, value=generating_args.top_p, step=0.01, label="Top P", interactive=True)
|
label="Maximum new tokens", interactive=True)
|
||||||
temperature = gr.Slider(0, 1.5, value=generating_args.temperature, step=0.01, label="Temperature", interactive=True)
|
top_p = gr.Slider(0.01, 1, value=generating_args.top_p, step=0.01,
|
||||||
|
label="Top P", interactive=True)
|
||||||
|
temperature = gr.Slider(0.01, 1.5, value=generating_args.temperature, step=0.01,
|
||||||
|
label="Temperature", interactive=True)
|
||||||
|
|
||||||
history = gr.State([])
|
history = gr.State([])
|
||||||
|
|
||||||
submitBtn.click(predict, [user_input, chatbot, max_length, top_p, temperature, history], [chatbot, history], show_progress=True)
|
submitBtn.click(predict, [user_input, chatbot, max_new_tokens, top_p, temperature, history], [chatbot, history], show_progress=True)
|
||||||
submitBtn.click(reset_user_input, [], [user_input])
|
submitBtn.click(reset_user_input, [], [user_input])
|
||||||
|
|
||||||
emptyBtn.click(reset_state, outputs=[chatbot, history], show_progress=True)
|
emptyBtn.click(reset_state, outputs=[chatbot, history], show_progress=True)
|
||||||
|
Loading…
x
Reference in New Issue
Block a user