mirror of
https://github.com/hiyouga/LLaMA-Factory.git
synced 2025-12-18 12:50:38 +08:00
[breaking change] refactor data pipeline (#6901)
* refactor data * rename file
This commit is contained in:
57
src/llamafactory/data/processor/pretrain.py
Normal file
57
src/llamafactory/data/processor/pretrain.py
Normal file
@@ -0,0 +1,57 @@
|
||||
# Copyright 2024 HuggingFace Inc. and the LlamaFactory team.
|
||||
#
|
||||
# This code is inspired by the HuggingFace's transformers library.
|
||||
# https://github.com/huggingface/transformers/blob/v4.40.0/examples/pytorch/language-modeling/run_clm.py
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
from dataclasses import dataclass
|
||||
from itertools import chain
|
||||
from typing import Any, Dict, List
|
||||
|
||||
from .processor_utils import DatasetProcessor
|
||||
|
||||
|
||||
@dataclass
|
||||
class PretrainDatasetProcessor(DatasetProcessor):
|
||||
def preprocess_dataset(self, examples: Dict[str, List[Any]]) -> Dict[str, List[Any]]:
|
||||
# build grouped texts with format `X1 X2 X3 ...` if packing is enabled
|
||||
eos_token = "<|end_of_text|>" if self.data_args.template == "llama3" else self.tokenizer.eos_token
|
||||
text_examples = [messages[0]["content"] + eos_token for messages in examples["_prompt"]]
|
||||
|
||||
if not self.data_args.packing:
|
||||
if getattr(self.tokenizer, "add_bos_token", False):
|
||||
text_examples = [self.tokenizer.bos_token + example for example in text_examples]
|
||||
|
||||
result = self.tokenizer(
|
||||
text_examples, add_special_tokens=False, truncation=True, max_length=self.data_args.cutoff_len
|
||||
)
|
||||
else:
|
||||
tokenized_examples = self.tokenizer(text_examples, add_special_tokens=False)
|
||||
concatenated_examples = {k: list(chain(*tokenized_examples[k])) for k in tokenized_examples.keys()}
|
||||
total_length = len(concatenated_examples[list(concatenated_examples.keys())[0]])
|
||||
block_size = self.data_args.cutoff_len
|
||||
total_length = (total_length // block_size) * block_size
|
||||
result = {
|
||||
k: [t[i : i + block_size] for i in range(0, total_length, block_size)]
|
||||
for k, t in concatenated_examples.items()
|
||||
}
|
||||
if getattr(self.tokenizer, "add_bos_token", False):
|
||||
for i in range(len(result["input_ids"])):
|
||||
result["input_ids"][i][0] = self.tokenizer.bos_token_id
|
||||
|
||||
return result
|
||||
|
||||
def print_data_example(self, example: Dict[str, List[int]]) -> None:
|
||||
print("input_ids:\n{}".format(example["input_ids"]))
|
||||
print("inputs:\n{}".format(self.tokenizer.decode(example["input_ids"], skip_special_tokens=False)))
|
||||
Reference in New Issue
Block a user