mirror of
https://github.com/hiyouga/LLaMA-Factory.git
synced 2025-10-14 23:58:11 +08:00
1. add custom eval dataset support
2. merge load dataset and split dataset function Former-commit-id: 963d97ba07e7efa3a4544c4d077283d9e112b3ad
This commit is contained in:
parent
9a1a5f9778
commit
5f2bd04799
@ -12,7 +12,8 @@ Currently we support datasets in **alpaca** and **sharegpt** format.
|
|||||||
"ranking": "whether the dataset is a preference dataset or not. (default: False)",
|
"ranking": "whether the dataset is a preference dataset or not. (default: False)",
|
||||||
"subset": "the name of the subset. (optional, default: None)",
|
"subset": "the name of the subset. (optional, default: None)",
|
||||||
"folder": "the name of the folder of the dataset repository on the Hugging Face hub. (optional, default: None)",
|
"folder": "the name of the folder of the dataset repository on the Hugging Face hub. (optional, default: None)",
|
||||||
"num_samples": "the number of samples in the dataset used for training. (optional, default: None)",
|
"num_samples": "the number of samples in the dataset used for training. (optional, default: None)",
|
||||||
|
"split": "which dataset split to use for training and evaluation (optional, default: train)",
|
||||||
"columns (optional)": {
|
"columns (optional)": {
|
||||||
"prompt": "the column name in the dataset containing the prompts. (default: instruction)",
|
"prompt": "the column name in the dataset containing the prompts. (default: instruction)",
|
||||||
"query": "the column name in the dataset containing the queries. (default: input)",
|
"query": "the column name in the dataset containing the queries. (default: input)",
|
||||||
|
@ -13,6 +13,7 @@
|
|||||||
"subset": "数据集子集的名称(可选,默认:None)",
|
"subset": "数据集子集的名称(可选,默认:None)",
|
||||||
"folder": "Hugging Face 仓库的文件夹名称(可选,默认:None)",
|
"folder": "Hugging Face 仓库的文件夹名称(可选,默认:None)",
|
||||||
"num_samples": "该数据集中用于训练的样本数量。(可选,默认:None)",
|
"num_samples": "该数据集中用于训练的样本数量。(可选,默认:None)",
|
||||||
|
"split": "数据集中的要使用的训练测试集切分(可选,默认:train)",
|
||||||
"columns(可选)": {
|
"columns(可选)": {
|
||||||
"prompt": "数据集代表提示词的表头名称(默认:instruction)",
|
"prompt": "数据集代表提示词的表头名称(默认:instruction)",
|
||||||
"query": "数据集代表请求的表头名称(默认:input)",
|
"query": "数据集代表请求的表头名称(默认:input)",
|
||||||
|
@ -65,7 +65,7 @@ def calculate_lr(
|
|||||||
)
|
)
|
||||||
tokenizer_module = load_tokenizer(model_args)
|
tokenizer_module = load_tokenizer(model_args)
|
||||||
tokenizer = tokenizer_module["tokenizer"]
|
tokenizer = tokenizer_module["tokenizer"]
|
||||||
trainset = get_dataset(model_args, data_args, training_args, stage, **tokenizer_module)
|
dataset_module = get_dataset(model_args, data_args, training_args, stage, **tokenizer_module)
|
||||||
if stage == "pt":
|
if stage == "pt":
|
||||||
data_collator = DataCollatorForLanguageModeling(tokenizer=tokenizer, mlm=False)
|
data_collator = DataCollatorForLanguageModeling(tokenizer=tokenizer, mlm=False)
|
||||||
elif stage == "sft":
|
elif stage == "sft":
|
||||||
@ -73,7 +73,7 @@ def calculate_lr(
|
|||||||
else:
|
else:
|
||||||
raise NotImplementedError("Stage does not supported: {}.".format(stage))
|
raise NotImplementedError("Stage does not supported: {}.".format(stage))
|
||||||
|
|
||||||
dataloader = DataLoader(trainset, batch_size, shuffle=False, collate_fn=data_collator, pin_memory=True)
|
dataloader = DataLoader(dataset_module["eval_dataset"], batch_size, shuffle=False, collate_fn=data_collator, pin_memory=True)
|
||||||
valid_tokens, total_tokens = 0, 0
|
valid_tokens, total_tokens = 0, 0
|
||||||
for batch in tqdm(dataloader):
|
for batch in tqdm(dataloader):
|
||||||
valid_tokens += torch.sum(batch["labels"] != IGNORE_INDEX).item()
|
valid_tokens += torch.sum(batch["labels"] != IGNORE_INDEX).item()
|
||||||
|
@ -87,7 +87,7 @@ def cal_ppl(
|
|||||||
)
|
)
|
||||||
tokenizer_module = load_tokenizer(model_args)
|
tokenizer_module = load_tokenizer(model_args)
|
||||||
tokenizer = tokenizer_module["tokenizer"]
|
tokenizer = tokenizer_module["tokenizer"]
|
||||||
trainset = get_dataset(model_args, data_args, training_args, stage, **tokenizer_module)
|
dataset_module = get_dataset(model_args, data_args, training_args, stage, **tokenizer_module)
|
||||||
model = load_model(tokenizer, model_args, finetuning_args, is_trainable=False)
|
model = load_model(tokenizer, model_args, finetuning_args, is_trainable=False)
|
||||||
if stage == "pt":
|
if stage == "pt":
|
||||||
data_collator = DataCollatorForLanguageModeling(tokenizer=tokenizer, mlm=False)
|
data_collator = DataCollatorForLanguageModeling(tokenizer=tokenizer, mlm=False)
|
||||||
@ -100,7 +100,7 @@ def cal_ppl(
|
|||||||
else:
|
else:
|
||||||
raise NotImplementedError("Stage does not supported: {}.".format(stage))
|
raise NotImplementedError("Stage does not supported: {}.".format(stage))
|
||||||
|
|
||||||
dataloader = DataLoader(trainset, batch_size, shuffle=False, collate_fn=data_collator, pin_memory=True)
|
dataloader = DataLoader(dataset_module["eval_dataset"], batch_size, shuffle=False, collate_fn=data_collator, pin_memory=True)
|
||||||
criterion = torch.nn.CrossEntropyLoss(reduction="none")
|
criterion = torch.nn.CrossEntropyLoss(reduction="none")
|
||||||
total_ppl = 0
|
total_ppl = 0
|
||||||
perplexities = []
|
perplexities = []
|
||||||
|
@ -47,10 +47,10 @@ def length_cdf(
|
|||||||
)
|
)
|
||||||
)
|
)
|
||||||
tokenizer_module = load_tokenizer(model_args)
|
tokenizer_module = load_tokenizer(model_args)
|
||||||
trainset = get_dataset(model_args, data_args, training_args, stage="sft", **tokenizer_module)
|
dataset_module = get_dataset(model_args, data_args, training_args, stage="sft", **tokenizer_module)
|
||||||
total_num = len(trainset)
|
total_num = len(dataset_module["eval_dataset"])
|
||||||
length_dict = defaultdict(int)
|
length_dict = defaultdict(int)
|
||||||
for sample in tqdm(trainset["input_ids"]):
|
for sample in tqdm(dataset_module["eval_dataset"]["input_ids"]):
|
||||||
length_dict[len(sample) // interval * interval] += 1
|
length_dict[len(sample) // interval * interval] += 1
|
||||||
|
|
||||||
length_tuples = list(length_dict.items())
|
length_tuples = list(length_dict.items())
|
||||||
|
@ -15,7 +15,7 @@
|
|||||||
import inspect
|
import inspect
|
||||||
import os
|
import os
|
||||||
import sys
|
import sys
|
||||||
from typing import TYPE_CHECKING, Literal, Optional, Union
|
from typing import TYPE_CHECKING, Literal, Optional, Union, Dict
|
||||||
|
|
||||||
import numpy as np
|
import numpy as np
|
||||||
from datasets import load_dataset, load_from_disk
|
from datasets import load_dataset, load_from_disk
|
||||||
@ -24,10 +24,10 @@ from ..extras.constants import FILEEXT2TYPE
|
|||||||
from ..extras.logging import get_logger
|
from ..extras.logging import get_logger
|
||||||
from ..extras.misc import has_tokenized_data
|
from ..extras.misc import has_tokenized_data
|
||||||
from .aligner import align_dataset
|
from .aligner import align_dataset
|
||||||
from .data_utils import merge_dataset
|
from .data_utils import merge_dataset, split_dataset
|
||||||
from .parser import get_dataset_list
|
from .parser import get_dataset_list
|
||||||
from .preprocess import get_preprocess_and_print_func
|
from .preprocess import get_preprocess_and_print_func
|
||||||
from .template import get_template_and_fix_tokenizer
|
from .template import get_template_and_fix_tokenizer, Template
|
||||||
|
|
||||||
|
|
||||||
if TYPE_CHECKING:
|
if TYPE_CHECKING:
|
||||||
@ -91,7 +91,7 @@ def load_single_dataset(
|
|||||||
subset_name=data_name,
|
subset_name=data_name,
|
||||||
data_dir=data_dir,
|
data_dir=data_dir,
|
||||||
data_files=data_files,
|
data_files=data_files,
|
||||||
split=data_args.split,
|
split=dataset_attr.split,
|
||||||
cache_dir=cache_dir,
|
cache_dir=cache_dir,
|
||||||
token=model_args.ms_hub_token,
|
token=model_args.ms_hub_token,
|
||||||
use_streaming=(data_args.streaming and (dataset_attr.load_from != "file")),
|
use_streaming=(data_args.streaming and (dataset_attr.load_from != "file")),
|
||||||
@ -111,7 +111,7 @@ def load_single_dataset(
|
|||||||
name=data_name,
|
name=data_name,
|
||||||
data_dir=data_dir,
|
data_dir=data_dir,
|
||||||
data_files=data_files,
|
data_files=data_files,
|
||||||
split=data_args.split,
|
split=dataset_attr.split,
|
||||||
cache_dir=model_args.cache_dir,
|
cache_dir=model_args.cache_dir,
|
||||||
token=model_args.hf_hub_token,
|
token=model_args.hf_hub_token,
|
||||||
streaming=(data_args.streaming and (dataset_attr.load_from != "file")),
|
streaming=(data_args.streaming and (dataset_attr.load_from != "file")),
|
||||||
@ -140,20 +140,17 @@ def load_single_dataset(
|
|||||||
return align_dataset(dataset, dataset_attr, data_args, training_args)
|
return align_dataset(dataset, dataset_attr, data_args, training_args)
|
||||||
|
|
||||||
|
|
||||||
def get_dataset(
|
def load_and_preprocess(
|
||||||
model_args: "ModelArguments",
|
model_args: "ModelArguments",
|
||||||
data_args: "DataArguments",
|
data_args: "DataArguments",
|
||||||
training_args: "Seq2SeqTrainingArguments",
|
training_args: "Seq2SeqTrainingArguments",
|
||||||
stage: Literal["pt", "sft", "rm", "ppo", "kto"],
|
stage: Literal["pt", "sft", "rm", "ppo", "kto"],
|
||||||
tokenizer: "PreTrainedTokenizer",
|
tokenizer: "PreTrainedTokenizer",
|
||||||
|
template: "Template",
|
||||||
processor: Optional["ProcessorMixin"] = None,
|
processor: Optional["ProcessorMixin"] = None,
|
||||||
|
is_eval: bool = False
|
||||||
) -> Union["Dataset", "IterableDataset"]:
|
) -> Union["Dataset", "IterableDataset"]:
|
||||||
template = get_template_and_fix_tokenizer(tokenizer, data_args.template, data_args.tool_format)
|
if not is_eval and data_args.tokenized_path is not None:
|
||||||
if data_args.train_on_prompt and template.efficient_eos:
|
|
||||||
raise ValueError("Current template does not support `train_on_prompt`.")
|
|
||||||
|
|
||||||
# Load tokenized dataset
|
|
||||||
if data_args.tokenized_path is not None:
|
|
||||||
if has_tokenized_data(data_args.tokenized_path):
|
if has_tokenized_data(data_args.tokenized_path):
|
||||||
logger.warning("Loading dataset from disk will ignore other data arguments.")
|
logger.warning("Loading dataset from disk will ignore other data arguments.")
|
||||||
dataset = load_from_disk(data_args.tokenized_path)
|
dataset = load_from_disk(data_args.tokenized_path)
|
||||||
@ -165,9 +162,21 @@ def get_dataset(
|
|||||||
if data_args.streaming:
|
if data_args.streaming:
|
||||||
raise ValueError("Turn off `streaming` when saving dataset to disk.")
|
raise ValueError("Turn off `streaming` when saving dataset to disk.")
|
||||||
|
|
||||||
|
if is_eval and data_args.eval_tokenized_path is not None:
|
||||||
|
if has_tokenized_data(data_args.eval_tokenized_path):
|
||||||
|
logger.warning("Loading dataset from disk will ignore other data arguments.")
|
||||||
|
dataset = load_from_disk(data_args.eval_tokenized_path)
|
||||||
|
logger.info("Loaded tokenized dataset from {}.".format(data_args.eval_tokenized_path))
|
||||||
|
if data_args.streaming:
|
||||||
|
dataset = dataset.to_iterable_dataset()
|
||||||
|
return dataset
|
||||||
|
|
||||||
|
if data_args.streaming:
|
||||||
|
raise ValueError("Turn off `streaming` when saving dataset to disk.")
|
||||||
|
|
||||||
with training_args.main_process_first(desc="load dataset"):
|
with training_args.main_process_first(desc="load dataset"):
|
||||||
all_datasets = []
|
all_datasets = []
|
||||||
for dataset_attr in get_dataset_list(data_args):
|
for dataset_attr in get_dataset_list(data_args, data_args.eval_dataset if is_eval else data_args.dataset):
|
||||||
if (stage == "rm" and dataset_attr.ranking is False) or (stage != "rm" and dataset_attr.ranking is True):
|
if (stage == "rm" and dataset_attr.ranking is False) or (stage != "rm" and dataset_attr.ranking is True):
|
||||||
raise ValueError("The dataset is not applicable in the current training stage.")
|
raise ValueError("The dataset is not applicable in the current training stage.")
|
||||||
|
|
||||||
@ -190,13 +199,20 @@ def get_dataset(
|
|||||||
|
|
||||||
dataset = dataset.map(preprocess_func, batched=True, remove_columns=column_names, **kwargs)
|
dataset = dataset.map(preprocess_func, batched=True, remove_columns=column_names, **kwargs)
|
||||||
|
|
||||||
if data_args.tokenized_path is not None:
|
if not is_eval and data_args.tokenized_path is not None:
|
||||||
if training_args.should_save:
|
if training_args.should_save:
|
||||||
dataset.save_to_disk(data_args.tokenized_path)
|
dataset.save_to_disk(data_args.tokenized_path)
|
||||||
logger.info("Tokenized dataset saved at {}.".format(data_args.tokenized_path))
|
logger.info("Tokenized dataset saved at {}.".format(data_args.tokenized_path))
|
||||||
logger.info("Please restart the training with `tokenized_path: {}`.".format(data_args.tokenized_path))
|
logger.info("Please restart the training with `tokenized_path: {}`.".format(data_args.tokenized_path))
|
||||||
|
|
||||||
sys.exit(0)
|
sys.exit(0)
|
||||||
|
if is_eval and data_args.eval_tokenized_path is not None:
|
||||||
|
if training_args.should_save:
|
||||||
|
dataset.save_to_disk(data_args.eval_tokenized_path)
|
||||||
|
logger.info("Tokenized dataset saved at {}.".format(data_args.eval_tokenized_path))
|
||||||
|
logger.info("Please restart the training with `tokenized_path: {}`.".format(data_args.eval_tokenized_path))
|
||||||
|
|
||||||
|
sys.exit(0)
|
||||||
|
|
||||||
if training_args.should_log:
|
if training_args.should_log:
|
||||||
try:
|
try:
|
||||||
@ -208,3 +224,24 @@ def get_dataset(
|
|||||||
raise RuntimeError("Cannot find valid samples, check `data/README.md` for the data format.")
|
raise RuntimeError("Cannot find valid samples, check `data/README.md` for the data format.")
|
||||||
|
|
||||||
return dataset
|
return dataset
|
||||||
|
|
||||||
|
|
||||||
|
def get_dataset(
|
||||||
|
model_args: "ModelArguments",
|
||||||
|
data_args: "DataArguments",
|
||||||
|
training_args: "Seq2SeqTrainingArguments",
|
||||||
|
stage: Literal["pt", "sft", "rm", "ppo", "kto"],
|
||||||
|
tokenizer: "PreTrainedTokenizer",
|
||||||
|
processor: Optional["ProcessorMixin"] = None
|
||||||
|
) -> Dict[str, "Dataset"]:
|
||||||
|
template = get_template_and_fix_tokenizer(tokenizer, data_args.template, data_args.tool_format)
|
||||||
|
if data_args.train_on_prompt and template.efficient_eos:
|
||||||
|
raise ValueError("Current template does not support `train_on_prompt`.")
|
||||||
|
|
||||||
|
train_dataset = load_and_preprocess(model_args, data_args, training_args, stage, tokenizer, template, processor)
|
||||||
|
|
||||||
|
if data_args.eval_dataset or data_args.eval_tokenized_path:
|
||||||
|
eval_dataset = load_and_preprocess(model_args, data_args, training_args, stage, tokenizer, template, processor, True)
|
||||||
|
return {"train_dataset": train_dataset, "eval_dataset": eval_dataset}
|
||||||
|
else:
|
||||||
|
return split_dataset(train_dataset, data_args, training_args)
|
||||||
|
@ -40,6 +40,7 @@ class DatasetAttr:
|
|||||||
subset: Optional[str] = None
|
subset: Optional[str] = None
|
||||||
folder: Optional[str] = None
|
folder: Optional[str] = None
|
||||||
num_samples: Optional[int] = None
|
num_samples: Optional[int] = None
|
||||||
|
split: Optional[str] = "train"
|
||||||
# common columns
|
# common columns
|
||||||
system: Optional[str] = None
|
system: Optional[str] = None
|
||||||
tools: Optional[str] = None
|
tools: Optional[str] = None
|
||||||
@ -71,9 +72,9 @@ class DatasetAttr:
|
|||||||
setattr(self, key, obj.get(key, default))
|
setattr(self, key, obj.get(key, default))
|
||||||
|
|
||||||
|
|
||||||
def get_dataset_list(data_args: "DataArguments") -> List["DatasetAttr"]:
|
def get_dataset_list(data_args: "DataArguments", dataset: "str" = None) -> List["DatasetAttr"]:
|
||||||
if data_args.dataset is not None:
|
if dataset is not None:
|
||||||
dataset_names = [ds.strip() for ds in data_args.dataset.split(",")]
|
dataset_names = [ds.strip() for ds in dataset.split(",")]
|
||||||
else:
|
else:
|
||||||
dataset_names = []
|
dataset_names = []
|
||||||
|
|
||||||
@ -122,6 +123,8 @@ def get_dataset_list(data_args: "DataArguments") -> List["DatasetAttr"]:
|
|||||||
dataset_attr.set_attr("subset", dataset_info[name])
|
dataset_attr.set_attr("subset", dataset_info[name])
|
||||||
dataset_attr.set_attr("folder", dataset_info[name])
|
dataset_attr.set_attr("folder", dataset_info[name])
|
||||||
dataset_attr.set_attr("num_samples", dataset_info[name])
|
dataset_attr.set_attr("num_samples", dataset_info[name])
|
||||||
|
if "split" in dataset_info[name]:
|
||||||
|
dataset_attr.set_attr("split", dataset_info[name])
|
||||||
|
|
||||||
if "columns" in dataset_info[name]:
|
if "columns" in dataset_info[name]:
|
||||||
column_names = ["system", "tools", "images", "chosen", "rejected", "kto_tag"]
|
column_names = ["system", "tools", "images", "chosen", "rejected", "kto_tag"]
|
||||||
|
@ -33,6 +33,11 @@ class DataArguments:
|
|||||||
default=None,
|
default=None,
|
||||||
metadata={"help": "The name of provided dataset(s) to use. Use commas to separate multiple datasets."},
|
metadata={"help": "The name of provided dataset(s) to use. Use commas to separate multiple datasets."},
|
||||||
)
|
)
|
||||||
|
eval_dataset: Optional[str] = field(
|
||||||
|
default=None,
|
||||||
|
metadata={"help": "The name of provided dataset(s) to use for eval during training. "
|
||||||
|
"Use commas to separate multiple datasets."},
|
||||||
|
)
|
||||||
dataset_dir: str = field(
|
dataset_dir: str = field(
|
||||||
default="data",
|
default="data",
|
||||||
metadata={"help": "Path to the folder containing the datasets."},
|
metadata={"help": "Path to the folder containing the datasets."},
|
||||||
@ -105,6 +110,10 @@ class DataArguments:
|
|||||||
default=None,
|
default=None,
|
||||||
metadata={"help": "Path to save or load the tokenized datasets."},
|
metadata={"help": "Path to save or load the tokenized datasets."},
|
||||||
)
|
)
|
||||||
|
eval_tokenized_path: Optional[str] = field(
|
||||||
|
default=None,
|
||||||
|
metadata={"help": "Path to save or load the tokenized eval datasets."},
|
||||||
|
)
|
||||||
|
|
||||||
def __post_init__(self):
|
def __post_init__(self):
|
||||||
if self.streaming and self.val_size > 1e-6 and self.val_size < 1:
|
if self.streaming and self.val_size > 1e-6 and self.val_size < 1:
|
||||||
|
@ -41,7 +41,7 @@ def run_dpo(
|
|||||||
):
|
):
|
||||||
tokenizer_module = load_tokenizer(model_args)
|
tokenizer_module = load_tokenizer(model_args)
|
||||||
tokenizer = tokenizer_module["tokenizer"]
|
tokenizer = tokenizer_module["tokenizer"]
|
||||||
dataset = get_dataset(model_args, data_args, training_args, stage="rm", **tokenizer_module)
|
dataset_module = get_dataset(model_args, data_args, training_args, stage="rm", **tokenizer_module)
|
||||||
model = load_model(tokenizer, model_args, finetuning_args, training_args.do_train)
|
model = load_model(tokenizer, model_args, finetuning_args, training_args.do_train)
|
||||||
|
|
||||||
data_collator = PairwiseDataCollatorWithPadding(
|
data_collator = PairwiseDataCollatorWithPadding(
|
||||||
@ -71,7 +71,7 @@ def run_dpo(
|
|||||||
data_collator=data_collator,
|
data_collator=data_collator,
|
||||||
callbacks=callbacks,
|
callbacks=callbacks,
|
||||||
**tokenizer_module,
|
**tokenizer_module,
|
||||||
**split_dataset(dataset, data_args, training_args),
|
**dataset_module,
|
||||||
)
|
)
|
||||||
|
|
||||||
# Training
|
# Training
|
||||||
|
@ -41,7 +41,7 @@ def run_kto(
|
|||||||
):
|
):
|
||||||
tokenizer_module = load_tokenizer(model_args)
|
tokenizer_module = load_tokenizer(model_args)
|
||||||
tokenizer = tokenizer_module["tokenizer"]
|
tokenizer = tokenizer_module["tokenizer"]
|
||||||
dataset = get_dataset(model_args, data_args, training_args, stage="kto", **tokenizer_module)
|
dataset_module = get_dataset(model_args, data_args, training_args, stage="kto", **tokenizer_module)
|
||||||
model = load_model(tokenizer, model_args, finetuning_args, training_args.do_train)
|
model = load_model(tokenizer, model_args, finetuning_args, training_args.do_train)
|
||||||
|
|
||||||
data_collator = KTODataCollatorWithPadding(
|
data_collator = KTODataCollatorWithPadding(
|
||||||
@ -68,7 +68,7 @@ def run_kto(
|
|||||||
data_collator=data_collator,
|
data_collator=data_collator,
|
||||||
callbacks=callbacks,
|
callbacks=callbacks,
|
||||||
**tokenizer_module,
|
**tokenizer_module,
|
||||||
**split_dataset(dataset, data_args, training_args),
|
**dataset_module,
|
||||||
)
|
)
|
||||||
|
|
||||||
# Training
|
# Training
|
||||||
|
@ -43,7 +43,7 @@ def run_ppo(
|
|||||||
):
|
):
|
||||||
tokenizer_module = load_tokenizer(model_args)
|
tokenizer_module = load_tokenizer(model_args)
|
||||||
tokenizer = tokenizer_module["tokenizer"]
|
tokenizer = tokenizer_module["tokenizer"]
|
||||||
dataset = get_dataset(model_args, data_args, training_args, stage="ppo", **tokenizer_module)
|
dataset_module = get_dataset(model_args, data_args, training_args, stage="ppo", **tokenizer_module)
|
||||||
model = load_model(tokenizer, model_args, finetuning_args, training_args.do_train, add_valuehead=True)
|
model = load_model(tokenizer, model_args, finetuning_args, training_args.do_train, add_valuehead=True)
|
||||||
|
|
||||||
tokenizer.padding_side = "left" # use left-padding in generation while using right-padding in training
|
tokenizer.padding_side = "left" # use left-padding in generation while using right-padding in training
|
||||||
@ -63,7 +63,7 @@ def run_ppo(
|
|||||||
model=model,
|
model=model,
|
||||||
reward_model=reward_model,
|
reward_model=reward_model,
|
||||||
ref_model=ref_model,
|
ref_model=ref_model,
|
||||||
dataset=dataset,
|
dataset=dataset_module["train_dataset"],
|
||||||
data_collator=data_collator,
|
data_collator=data_collator,
|
||||||
**tokenizer_module,
|
**tokenizer_module,
|
||||||
)
|
)
|
||||||
|
@ -42,7 +42,7 @@ def run_pt(
|
|||||||
):
|
):
|
||||||
tokenizer_module = load_tokenizer(model_args)
|
tokenizer_module = load_tokenizer(model_args)
|
||||||
tokenizer = tokenizer_module["tokenizer"]
|
tokenizer = tokenizer_module["tokenizer"]
|
||||||
dataset = get_dataset(model_args, data_args, training_args, stage="pt", **tokenizer_module)
|
dataset_module = get_dataset(model_args, data_args, training_args, stage="pt", **tokenizer_module)
|
||||||
model = load_model(tokenizer, model_args, finetuning_args, training_args.do_train)
|
model = load_model(tokenizer, model_args, finetuning_args, training_args.do_train)
|
||||||
data_collator = DataCollatorForLanguageModeling(tokenizer=tokenizer, mlm=False)
|
data_collator = DataCollatorForLanguageModeling(tokenizer=tokenizer, mlm=False)
|
||||||
|
|
||||||
@ -54,7 +54,7 @@ def run_pt(
|
|||||||
data_collator=data_collator,
|
data_collator=data_collator,
|
||||||
callbacks=callbacks,
|
callbacks=callbacks,
|
||||||
**tokenizer_module,
|
**tokenizer_module,
|
||||||
**split_dataset(dataset, data_args, training_args),
|
**dataset_module,
|
||||||
)
|
)
|
||||||
|
|
||||||
# Training
|
# Training
|
||||||
|
@ -41,7 +41,7 @@ def run_rm(
|
|||||||
):
|
):
|
||||||
tokenizer_module = load_tokenizer(model_args)
|
tokenizer_module = load_tokenizer(model_args)
|
||||||
tokenizer = tokenizer_module["tokenizer"]
|
tokenizer = tokenizer_module["tokenizer"]
|
||||||
dataset = get_dataset(model_args, data_args, training_args, stage="rm", **tokenizer_module)
|
dataset_module = get_dataset(model_args, data_args, training_args, stage="rm", **tokenizer_module)
|
||||||
model = load_model(tokenizer, model_args, finetuning_args, training_args.do_train, add_valuehead=True)
|
model = load_model(tokenizer, model_args, finetuning_args, training_args.do_train, add_valuehead=True)
|
||||||
data_collator = PairwiseDataCollatorWithPadding(tokenizer, pad_to_multiple_of=8)
|
data_collator = PairwiseDataCollatorWithPadding(tokenizer, pad_to_multiple_of=8)
|
||||||
|
|
||||||
@ -57,7 +57,7 @@ def run_rm(
|
|||||||
callbacks=callbacks,
|
callbacks=callbacks,
|
||||||
compute_metrics=compute_accuracy,
|
compute_metrics=compute_accuracy,
|
||||||
**tokenizer_module,
|
**tokenizer_module,
|
||||||
**split_dataset(dataset, data_args, training_args),
|
**dataset_module,
|
||||||
)
|
)
|
||||||
|
|
||||||
# Training
|
# Training
|
||||||
@ -81,7 +81,7 @@ def run_rm(
|
|||||||
|
|
||||||
# Predict
|
# Predict
|
||||||
if training_args.do_predict:
|
if training_args.do_predict:
|
||||||
predict_results = trainer.predict(dataset, metric_key_prefix="predict")
|
predict_results = trainer.predict(dataset_module["eval_dataset"], metric_key_prefix="predict")
|
||||||
trainer.log_metrics("predict", predict_results.metrics)
|
trainer.log_metrics("predict", predict_results.metrics)
|
||||||
trainer.save_metrics("predict", predict_results.metrics)
|
trainer.save_metrics("predict", predict_results.metrics)
|
||||||
trainer.save_predictions(predict_results)
|
trainer.save_predictions(predict_results)
|
||||||
|
@ -43,7 +43,7 @@ def run_sft(
|
|||||||
):
|
):
|
||||||
tokenizer_module = load_tokenizer(model_args)
|
tokenizer_module = load_tokenizer(model_args)
|
||||||
tokenizer = tokenizer_module["tokenizer"]
|
tokenizer = tokenizer_module["tokenizer"]
|
||||||
dataset = get_dataset(model_args, data_args, training_args, stage="sft", **tokenizer_module)
|
dataset_module = get_dataset(model_args, data_args, training_args, stage="sft", **tokenizer_module)
|
||||||
model = load_model(tokenizer, model_args, finetuning_args, training_args.do_train)
|
model = load_model(tokenizer, model_args, finetuning_args, training_args.do_train)
|
||||||
|
|
||||||
if training_args.predict_with_generate:
|
if training_args.predict_with_generate:
|
||||||
@ -76,7 +76,7 @@ def run_sft(
|
|||||||
compute_metrics=ComputeMetrics(tokenizer) if training_args.predict_with_generate else compute_accuracy,
|
compute_metrics=ComputeMetrics(tokenizer) if training_args.predict_with_generate else compute_accuracy,
|
||||||
preprocess_logits_for_metrics=None if training_args.predict_with_generate else eval_logit_processor,
|
preprocess_logits_for_metrics=None if training_args.predict_with_generate else eval_logit_processor,
|
||||||
**tokenizer_module,
|
**tokenizer_module,
|
||||||
**split_dataset(dataset, data_args, training_args),
|
**dataset_module,
|
||||||
)
|
)
|
||||||
|
|
||||||
# Keyword arguments for `model.generate`
|
# Keyword arguments for `model.generate`
|
||||||
@ -105,12 +105,12 @@ def run_sft(
|
|||||||
|
|
||||||
# Predict
|
# Predict
|
||||||
if training_args.do_predict:
|
if training_args.do_predict:
|
||||||
predict_results = trainer.predict(dataset, metric_key_prefix="predict", **gen_kwargs)
|
predict_results = trainer.predict(dataset_module["eval_dataset"], metric_key_prefix="predict", **gen_kwargs)
|
||||||
if training_args.predict_with_generate: # predict_loss will be wrong if predict_with_generate is enabled
|
if training_args.predict_with_generate: # predict_loss will be wrong if predict_with_generate is enabled
|
||||||
predict_results.metrics.pop("predict_loss", None)
|
predict_results.metrics.pop("predict_loss", None)
|
||||||
trainer.log_metrics("predict", predict_results.metrics)
|
trainer.log_metrics("predict", predict_results.metrics)
|
||||||
trainer.save_metrics("predict", predict_results.metrics)
|
trainer.save_metrics("predict", predict_results.metrics)
|
||||||
trainer.save_predictions(dataset, predict_results)
|
trainer.save_predictions(dataset_module["eval_dataset"], predict_results)
|
||||||
|
|
||||||
# Create model card
|
# Create model card
|
||||||
create_modelcard_and_push(trainer, model_args, data_args, training_args, finetuning_args)
|
create_modelcard_and_push(trainer, model_args, data_args, training_args, finetuning_args)
|
||||||
|
@ -47,7 +47,7 @@ def test_supervised(num_samples: int):
|
|||||||
model_args, data_args, training_args, _, _ = get_train_args(TRAIN_ARGS)
|
model_args, data_args, training_args, _, _ = get_train_args(TRAIN_ARGS)
|
||||||
tokenizer_module = load_tokenizer(model_args)
|
tokenizer_module = load_tokenizer(model_args)
|
||||||
tokenizer = tokenizer_module["tokenizer"]
|
tokenizer = tokenizer_module["tokenizer"]
|
||||||
tokenized_data = get_dataset(model_args, data_args, training_args, stage="sft", **tokenizer_module)
|
dataset_module = get_dataset(model_args, data_args, training_args, stage="sft", **tokenizer_module)
|
||||||
|
|
||||||
ref_tokenizer = AutoTokenizer.from_pretrained(TINY_LLAMA)
|
ref_tokenizer = AutoTokenizer.from_pretrained(TINY_LLAMA)
|
||||||
|
|
||||||
@ -63,5 +63,5 @@ def test_supervised(num_samples: int):
|
|||||||
{"role": "assistant", "content": original_data[index]["output"]},
|
{"role": "assistant", "content": original_data[index]["output"]},
|
||||||
]
|
]
|
||||||
templated_result = ref_tokenizer.apply_chat_template(messages, tokenize=False)
|
templated_result = ref_tokenizer.apply_chat_template(messages, tokenize=False)
|
||||||
decoded_result = tokenizer.decode(tokenized_data["input_ids"][index])
|
decoded_result = tokenizer.decode(dataset_module["train_dataset"]["input_ids"][index])
|
||||||
assert templated_result == decoded_result
|
assert templated_result == decoded_result
|
||||||
|
Loading…
x
Reference in New Issue
Block a user