mirror of
https://github.com/hiyouga/LLaMA-Factory.git
synced 2025-12-14 19:06:26 +08:00
@@ -83,15 +83,12 @@ def create_ref_model(
|
||||
The valuehead parameter is randomly initialized since it is useless for PPO training.
|
||||
"""
|
||||
if finetuning_args.ref_model is not None:
|
||||
ref_model_args_dict = model_args.to_dict()
|
||||
ref_model_args_dict.update(
|
||||
dict(
|
||||
model_name_or_path=finetuning_args.ref_model,
|
||||
adapter_name_or_path=finetuning_args.ref_model_adapters,
|
||||
quantization_bit=finetuning_args.ref_model_quantization_bit,
|
||||
)
|
||||
ref_model_args = ModelArguments.copyfrom(
|
||||
model_args,
|
||||
model_name_or_path=finetuning_args.ref_model,
|
||||
adapter_name_or_path=finetuning_args.ref_model_adapters,
|
||||
quantization_bit=finetuning_args.ref_model_quantization_bit,
|
||||
)
|
||||
ref_model_args = ModelArguments(**ref_model_args_dict)
|
||||
ref_finetuning_args = FinetuningArguments()
|
||||
tokenizer = load_tokenizer(ref_model_args)["tokenizer"]
|
||||
ref_model = load_model(
|
||||
@@ -102,9 +99,11 @@ def create_ref_model(
|
||||
if finetuning_args.finetuning_type == "lora":
|
||||
ref_model = None
|
||||
else:
|
||||
tokenizer = load_tokenizer(model_args)["tokenizer"]
|
||||
ref_model_args = ModelArguments.copyfrom(model_args)
|
||||
ref_finetuning_args = FinetuningArguments()
|
||||
tokenizer = load_tokenizer(ref_model_args)["tokenizer"]
|
||||
ref_model = load_model(
|
||||
tokenizer, model_args, finetuning_args, is_trainable=False, add_valuehead=add_valuehead
|
||||
tokenizer, ref_model_args, ref_finetuning_args, is_trainable=False, add_valuehead=add_valuehead
|
||||
)
|
||||
logger.info("Created reference model from the model itself.")
|
||||
|
||||
@@ -139,15 +138,12 @@ def create_reward_model(
|
||||
logger.info("Loaded adapter weights of reward model from {}".format(finetuning_args.reward_model))
|
||||
return None
|
||||
else:
|
||||
reward_model_args_dict = model_args.to_dict()
|
||||
reward_model_args_dict.update(
|
||||
dict(
|
||||
model_name_or_path=finetuning_args.reward_model,
|
||||
adapter_name_or_path=finetuning_args.reward_model_adapters,
|
||||
quantization_bit=finetuning_args.reward_model_quantization_bit,
|
||||
)
|
||||
reward_model_args = ModelArguments.copyfrom(
|
||||
model_args,
|
||||
model_name_or_path=finetuning_args.reward_model,
|
||||
adapter_name_or_path=finetuning_args.reward_model_adapters,
|
||||
quantization_bit=finetuning_args.reward_model_quantization_bit,
|
||||
)
|
||||
reward_model_args = ModelArguments(**reward_model_args_dict)
|
||||
reward_finetuning_args = FinetuningArguments()
|
||||
tokenizer = load_tokenizer(reward_model_args)["tokenizer"]
|
||||
reward_model = load_model(
|
||||
|
||||
Reference in New Issue
Block a user