mirror of
https://github.com/hiyouga/LLaMA-Factory.git
synced 2025-10-14 07:42:49 +08:00
[v1] add data converter (#9263)
This commit is contained in:
parent
48974783da
commit
52e46e162e
@ -12,8 +12,25 @@
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
from typing import Any
|
||||
|
||||
from ..config.training_args import TrainingArguments
|
||||
from ..extras.types import DataCollator, Model, Processor, TorchDataset
|
||||
from ..extras.types import Model, Processor, Tensor, TorchDataset
|
||||
|
||||
|
||||
class DataCollator:
|
||||
"""Default Data collator."""
|
||||
|
||||
def __init__(self, processor: Processor) -> None:
|
||||
self.processor = processor
|
||||
|
||||
def __call__(self, features: list[dict[str, Any]]) -> dict[str, Tensor]:
|
||||
"""Collate features into a batch."""
|
||||
for feature in features:
|
||||
pass
|
||||
|
||||
# sft: messages
|
||||
# dpo: chosen_messages, rejected_messages
|
||||
|
||||
|
||||
class BaseTrainer:
|
||||
|
@ -22,19 +22,7 @@ from omegaconf import OmegaConf
|
||||
from torch.utils.data import Dataset
|
||||
|
||||
from ..config.data_args import DataArguments
|
||||
from ..extras.types import DatasetInfo, HFDataset, Processor, Tensor
|
||||
from ..plugins.data_plugins.loader import DataGetItemPlugin, DataIndexPlugin, DataLoaderPlugin
|
||||
|
||||
|
||||
class DataCollator:
|
||||
"""Default Data collator."""
|
||||
|
||||
def __init__(self, processor: Processor, dataset_info: dict[str, DatasetInfo]) -> None:
|
||||
self.processor = processor
|
||||
self.dataset_info = dataset_info
|
||||
|
||||
def __call__(self, features: list[dict[str, Any]]) -> dict[str, Tensor]:
|
||||
pass
|
||||
from ..extras.types import DatasetInfo, HFDataset, Sample
|
||||
|
||||
|
||||
class DataEngine(Dataset):
|
||||
@ -45,73 +33,78 @@ class DataEngine(Dataset):
|
||||
"""Data arguments."""
|
||||
self.datasets: dict[str, HFDataset] = {}
|
||||
"""Dict of (dataset_name, dataset)"""
|
||||
self.dataset_info: dict[str, DatasetInfo] = {}
|
||||
self.dataset_infos: dict[str, DatasetInfo] = {}
|
||||
"""Dict of (dataset_name, dataset_info)"""
|
||||
self.streaming: bool = False
|
||||
"""Whether dataset is streaming."""
|
||||
self.data_index: list[tuple[str, int]] = []
|
||||
"""List of (dataset_name, sample_index)"""
|
||||
self.data_loader_plugin = DataLoaderPlugin(args=self.args)
|
||||
"""Data loader plugin."""
|
||||
self.data_index_plugin = DataIndexPlugin()
|
||||
"""Data index plugin."""
|
||||
self.data_getitem_plugin = DataGetItemPlugin(datasets=self.datasets, data_index=self.data_index)
|
||||
"""Data getitem plugin."""
|
||||
self.streaming: bool = False
|
||||
"""Whether dataset is streaming."""
|
||||
self.get_dataset_info()
|
||||
self.load_dataset()
|
||||
self.build_data_index()
|
||||
|
||||
def get_dataset_info(self) -> None:
|
||||
"""Get dataset info."""
|
||||
"""Get dataset info from data arguments."""
|
||||
if self.args.dataset.endswith(".yaml") and os.path.isfile(
|
||||
os.path.join(self.args.dataset_dir, self.args.dataset)
|
||||
): # local file
|
||||
self.dataset_info = OmegaConf.load(os.path.join(self.args.dataset_dir, self.args.dataset))
|
||||
self.dataset_infos = OmegaConf.load(os.path.join(self.args.dataset_dir, self.args.dataset))
|
||||
elif self.args.dataset.endswith(".yaml"): # hf hub uri, e.g. llamafactory/v1-sft-demo/dataset_info.yaml
|
||||
repo_id, filename = os.path.split(self.args.dataset)
|
||||
filepath = hf_hub_download(repo_id=repo_id, filename=filename, repo_type="dataset")
|
||||
self.dataset_info = OmegaConf.load(filepath)
|
||||
self.dataset_infos = OmegaConf.load(filepath)
|
||||
elif os.path.exists(os.path.join(self.args.dataset_dir, self.args.dataset)): # local file(s)
|
||||
self.dataset_info = {"default": {"file_name": self.args.dataset}}
|
||||
self.dataset_infos = {"default": {"file_name": self.args.dataset}}
|
||||
else: # hf hub dataset, e.g. llamafactory/v1-sft-demo
|
||||
self.dataset_info = {"default": {"hf_hub_url": self.args.dataset}}
|
||||
self.dataset_infos = {"default": {"hf_hub_url": self.args.dataset}}
|
||||
|
||||
def load_dataset(self) -> None:
|
||||
"""Load dataset from dataset info."""
|
||||
for key, value in self.dataset_info.items():
|
||||
"""Load datasets according to dataset info."""
|
||||
for key, value in self.dataset_infos.items():
|
||||
split = value.get("split", "train")
|
||||
streaming = value.get("streaming", False)
|
||||
self.streaming |= streaming
|
||||
if "hf_hub_url" in value:
|
||||
self.datasets[key] = load_dataset(value["hf_hub_url"], split=split, streaming=streaming)
|
||||
else: # data loader plugin
|
||||
self.datasets[key] = self.data_loader_plugin.auto_load_data(value)
|
||||
from ..plugins.data_plugins.loader import DataLoaderPlugin
|
||||
|
||||
self.datasets[key] = DataLoaderPlugin(args=self.args).auto_load_data(value)
|
||||
|
||||
def build_data_index(self) -> None:
|
||||
"""Build dataset index."""
|
||||
for dataset_name, dataset in self.datasets.items():
|
||||
size = self.dataset_info[dataset_name].get("size")
|
||||
weight = self.dataset_info[dataset_name].get("weight")
|
||||
size = self.dataset_infos[dataset_name].get("size")
|
||||
weight = self.dataset_infos[dataset_name].get("weight")
|
||||
if self.streaming:
|
||||
data_index = [(dataset_name, -1) for _ in range(1000)]
|
||||
else:
|
||||
data_index = [(dataset_name, sample_index) for sample_index in range(len(dataset))]
|
||||
|
||||
if size or weight: # data index plugin
|
||||
data_index = self.data_index_plugin.adjust_data_index(data_index, size, weight)
|
||||
from ..plugins.data_plugins.loader import DataIndexPlugin
|
||||
|
||||
data_index = DataIndexPlugin().adjust_data_index(data_index, size, weight)
|
||||
|
||||
self.data_index.extend(data_index)
|
||||
|
||||
def get_data_collator(self, processor: Processor) -> DataCollator:
|
||||
"""Get data collator.
|
||||
def _convert_data_sample(self, raw_sample: dict[str, Any], dataset_name: str) -> Sample:
|
||||
"""Convert dataset sample.
|
||||
|
||||
Args:
|
||||
processor (Processor): Processor.
|
||||
raw_sample (dict[str, Any]): Raw dataset sample.
|
||||
dataset_name (str): Dataset name.
|
||||
|
||||
Returns:
|
||||
DataCollator: Data collator.
|
||||
Sample: Dataset sample.
|
||||
"""
|
||||
return DataCollator(processor=processor, dataset_info=self.dataset_info)
|
||||
converter = self.dataset_infos[dataset_name].get("converter")
|
||||
if converter is not None:
|
||||
from ..plugins.data_plugins.converter import get_converter
|
||||
|
||||
return {"_dataset_name": dataset_name, **get_converter(converter)(raw_sample)}
|
||||
else:
|
||||
return {"_dataset_name": dataset_name, **raw_sample}
|
||||
|
||||
def __len__(self) -> int:
|
||||
"""Get dataset length.
|
||||
@ -124,23 +117,33 @@ class DataEngine(Dataset):
|
||||
else:
|
||||
return len(self.data_index)
|
||||
|
||||
def __getitem__(self, index: Union[int, slice, list[int]]) -> Union[dict, list[dict]]:
|
||||
def __getitem__(self, index: Union[int, Any]) -> Union[Sample, list[Sample]]:
|
||||
"""Get dataset item.
|
||||
|
||||
Args:
|
||||
index (int): Dataset index.
|
||||
|
||||
Returns:
|
||||
dict: Dataset item.
|
||||
Sample: Dataset item.
|
||||
"""
|
||||
if self.streaming:
|
||||
raise ValueError("Streaming dataset does not support index access.")
|
||||
|
||||
if isinstance(index, int):
|
||||
dataset_name, sample_index = self.data_index[index]
|
||||
return {"_dataset_name": dataset_name, **self.datasets[dataset_name][sample_index]}
|
||||
return self._convert_data_sample(self.datasets[dataset_name][sample_index], dataset_name)
|
||||
else:
|
||||
return self.data_getitem_plugin.get_data(index)
|
||||
from ..plugins.data_plugins.loader import DataSelectorPlugin
|
||||
|
||||
selected_index = DataSelectorPlugin(data_index=self.data_index).select(index)
|
||||
if isinstance(selected_index, list):
|
||||
return [
|
||||
self._convert_data_sample(self.datasets[dataset_name][sample_index], dataset_name)
|
||||
for dataset_name, sample_index in selected_index
|
||||
]
|
||||
else:
|
||||
dataset_name, sample_index = selected_index
|
||||
return self._convert_data_sample(self.datasets[dataset_name][sample_index], dataset_name)
|
||||
|
||||
def __iter__(self) -> Iterable:
|
||||
"""Get dataset iterator.
|
||||
@ -156,7 +159,7 @@ class DataEngine(Dataset):
|
||||
|
||||
raise NotImplementedError()
|
||||
|
||||
def __aiter__(self) -> AsyncIterable:
|
||||
async def __aiter__(self) -> AsyncIterable:
|
||||
"""Get dataset async iterator.
|
||||
|
||||
Returns:
|
||||
@ -169,3 +172,11 @@ class DataEngine(Dataset):
|
||||
pass
|
||||
|
||||
raise NotImplementedError()
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
from ..config.parser import get_args
|
||||
|
||||
data_args, *_ = get_args()
|
||||
data_engine = DataEngine(data_args=data_args)
|
||||
print(data_engine[0])
|
||||
|
@ -12,7 +12,7 @@
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
from typing import TYPE_CHECKING, NotRequired, TypedDict, Union
|
||||
from typing import TYPE_CHECKING, Literal, NotRequired, TypedDict, Union
|
||||
|
||||
|
||||
if TYPE_CHECKING:
|
||||
@ -26,7 +26,8 @@ if TYPE_CHECKING:
|
||||
HFDataset = Union[datasets.Dataset, datasets.IterableDataset]
|
||||
DataCollator = transformers.DataCollator
|
||||
DataLoader = torch.utils.data.DataLoader
|
||||
Model = transformers.PreTrainedModel
|
||||
HFModel = transformers.PreTrainedModel
|
||||
DistModel = torch.nn.parallel.DistributedDataParallel
|
||||
Processor = Union[transformers.PreTrainedTokenizer, transformers.ProcessorMixin]
|
||||
else:
|
||||
Tensor = None
|
||||
@ -34,7 +35,8 @@ else:
|
||||
HFDataset = None
|
||||
DataCollator = None
|
||||
DataLoader = None
|
||||
Model = None
|
||||
HFModel = None
|
||||
DistModel = None
|
||||
Processor = None
|
||||
|
||||
|
||||
@ -55,3 +57,37 @@ class DatasetInfo(TypedDict, total=False):
|
||||
"""Dataset weight, default to 1.0."""
|
||||
streaming: NotRequired[bool]
|
||||
"""Is streaming dataset, default to False."""
|
||||
|
||||
|
||||
class Content(TypedDict):
|
||||
type: Literal["text", "tools", "reasoning", "tool_calls", "image_url"]
|
||||
value: str
|
||||
|
||||
|
||||
class Message(TypedDict):
|
||||
role: Literal["system", "user", "assistant"]
|
||||
content: list[Content]
|
||||
loss_weight: float
|
||||
|
||||
|
||||
class SFTSample(TypedDict):
|
||||
messages: list[Message]
|
||||
extra_info: NotRequired[str]
|
||||
_dataset_name: NotRequired[str]
|
||||
|
||||
|
||||
class DPOSample(TypedDict):
|
||||
chosen_messages: list[Message]
|
||||
rejected_messages: list[Message]
|
||||
extra_info: NotRequired[str]
|
||||
_dataset_name: NotRequired[str]
|
||||
|
||||
|
||||
Sample = Union[SFTSample, DPOSample]
|
||||
|
||||
|
||||
class Model(TypedDict):
|
||||
hf_model: HFModel
|
||||
"""HF model."""
|
||||
dist_model: DistModel
|
||||
"""Distributed model."""
|
||||
|
@ -0,0 +1,71 @@
|
||||
# Copyright 2025 the LlamaFactory team.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
|
||||
from typing import Callable, NotRequired, TypedDict
|
||||
|
||||
from ...extras.types import Sample, SFTSample
|
||||
|
||||
|
||||
class AlpacaSample(TypedDict, total=False):
|
||||
system: NotRequired[str]
|
||||
instruction: NotRequired[str]
|
||||
input: NotRequired[str]
|
||||
output: NotRequired[str]
|
||||
|
||||
|
||||
def alpaca_converter(raw_sample: AlpacaSample) -> SFTSample:
|
||||
"""Convert Alpaca sample to SFT sample.
|
||||
|
||||
Args:
|
||||
raw_sample (AlpacaSample): Alpaca sample.
|
||||
|
||||
Returns:
|
||||
SFTSample: SFT sample.
|
||||
"""
|
||||
messages = []
|
||||
if "system" in raw_sample:
|
||||
messages.append(
|
||||
{"role": "system", "content": [{"type": "text", "value": raw_sample["system"]}], "loss_weight": 0.0}
|
||||
)
|
||||
|
||||
if "instruction" in raw_sample or "input" in raw_sample:
|
||||
messages.append(
|
||||
{
|
||||
"role": "user",
|
||||
"content": [
|
||||
{"type": "text", "value": raw_sample.get("instruction", "") + raw_sample.get("input", "")}
|
||||
],
|
||||
"loss_weight": 0.0,
|
||||
}
|
||||
)
|
||||
|
||||
if "output" in raw_sample:
|
||||
messages.append(
|
||||
{"role": "assistant", "content": [{"type": "text", "value": raw_sample["output"]}], "loss_weight": 1.0}
|
||||
)
|
||||
|
||||
return {"messages": messages}
|
||||
|
||||
|
||||
CONVERTERS = {
|
||||
"alpaca": alpaca_converter,
|
||||
}
|
||||
|
||||
|
||||
def get_converter(converter_name: str) -> Callable[[dict], Sample]:
|
||||
if converter_name not in CONVERTERS:
|
||||
raise ValueError(f"Converter {converter_name} not found.")
|
||||
|
||||
return CONVERTERS[converter_name]
|
@ -15,7 +15,7 @@
|
||||
|
||||
import os
|
||||
from dataclasses import dataclass
|
||||
from typing import Literal, Optional, Union
|
||||
from typing import Any, Literal, Optional, Union
|
||||
|
||||
from datasets import load_dataset
|
||||
|
||||
@ -25,7 +25,10 @@ from ...extras.types import DatasetInfo, HFDataset
|
||||
|
||||
@dataclass
|
||||
class DataLoaderPlugin:
|
||||
"""Plugin for loading dataset."""
|
||||
|
||||
args: DataArguments
|
||||
"""Data arguments."""
|
||||
|
||||
def _get_builder_name(self, path: str) -> Literal["arrow", "csv", "json", "parquet", "text"]:
|
||||
"""Get dataset builder name.
|
||||
@ -66,9 +69,21 @@ class DataLoaderPlugin:
|
||||
|
||||
@dataclass
|
||||
class DataIndexPlugin:
|
||||
"""Plugin for adjusting dataset index."""
|
||||
|
||||
def adjust_data_index(
|
||||
self, data_index: list[tuple[str, int]], size: Optional[int], weight: Optional[float]
|
||||
) -> list[tuple[str, int]]:
|
||||
"""Adjust dataset index by size and weight.
|
||||
|
||||
Args:
|
||||
data_index (list[tuple[str, int]]): List of (dataset_name, sample_index).
|
||||
size (Optional[int]): Desired dataset size.
|
||||
weight (Optional[float]): Desired dataset weight.
|
||||
|
||||
Returns:
|
||||
list[tuple[str, int]]: Adjusted dataset index.
|
||||
"""
|
||||
if size is not None:
|
||||
data_index = self.adjust_by_size(data_index, size)
|
||||
|
||||
@ -85,18 +100,24 @@ class DataIndexPlugin:
|
||||
|
||||
|
||||
@dataclass
|
||||
class DataGetItemPlugin:
|
||||
datasets: dict[str, HFDataset]
|
||||
class DataSelectorPlugin:
|
||||
"""Plugin for selecting dataset samples."""
|
||||
|
||||
data_index: list[tuple[str, int]]
|
||||
"""List of (dataset_name, sample_index)"""
|
||||
|
||||
def _get_by_index(self, index: int) -> dict:
|
||||
dataset_name, sample_index = self.data_index[index]
|
||||
return {"_dataset_name": dataset_name, **self.datasets[dataset_name][sample_index]}
|
||||
def select(self, index: Union[slice, list[int], Any]) -> Union[tuple[str, int], list[tuple[str, int]]]:
|
||||
"""Select dataset samples.
|
||||
|
||||
def get_data(self, index: Union[slice, list[int]]) -> list[dict]:
|
||||
Args:
|
||||
index (Union[slice, list[int], Any]): Index of dataset samples.
|
||||
|
||||
Returns:
|
||||
Union[tuple[str, int], list[tuple[str, int]]]: Selected dataset samples.
|
||||
"""
|
||||
if isinstance(index, slice):
|
||||
return [self._get_by_index(i) for i in range(*index.indices(len(self.data_index)))]
|
||||
return [self.data_index[i] for i in range(*index.indices(len(self.data_index)))]
|
||||
elif isinstance(index, list):
|
||||
return [self._get_by_index(i) for i in index]
|
||||
return [self.data_index[i] for i in index]
|
||||
else:
|
||||
raise ValueError(f"Invalid index type {type(index)}.")
|
||||
|
@ -12,7 +12,6 @@
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
import os
|
||||
import random
|
||||
|
||||
import pytest
|
||||
@ -22,14 +21,11 @@ from llamafactory.v1.config.data_args import DataArguments
|
||||
from llamafactory.v1.core.data_engine import DataEngine
|
||||
|
||||
|
||||
TINY_DATA = os.getenv("TINY_DATA", "llamafactory/v1-sft-demo")
|
||||
|
||||
|
||||
@pytest.mark.parametrize("num_samples", [16])
|
||||
def test_map_dataset(num_samples: int):
|
||||
data_args = DataArguments(dataset=TINY_DATA)
|
||||
data_args = DataArguments(dataset="llamafactory/v1-sft-demo")
|
||||
data_engine = DataEngine(data_args)
|
||||
original_data = load_dataset(TINY_DATA, split="train")
|
||||
original_data = load_dataset("llamafactory/v1-sft-demo", split="train")
|
||||
indexes = random.choices(range(len(data_engine)), k=num_samples)
|
||||
for index in indexes:
|
||||
print(data_engine[index])
|
||||
|
52
tests_v1/plugins/data_plugins/test_converter.py
Normal file
52
tests_v1/plugins/data_plugins/test_converter.py
Normal file
@ -0,0 +1,52 @@
|
||||
# Copyright 2025 the LlamaFactory team.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
import random
|
||||
|
||||
import pytest
|
||||
from datasets import load_dataset
|
||||
|
||||
from llamafactory.v1.config.data_args import DataArguments
|
||||
from llamafactory.v1.core.data_engine import DataEngine
|
||||
|
||||
|
||||
@pytest.mark.parametrize("num_samples", [16])
|
||||
def test_alpaca_converter(num_samples: int):
|
||||
data_args = DataArguments(dataset="llamafactory/v1-sft-demo/dataset_info.yaml")
|
||||
data_engine = DataEngine(data_args)
|
||||
original_data = load_dataset("llamafactory/tiny-supervised-dataset", split="train")
|
||||
indexes = random.choices(range(len(data_engine)), k=num_samples)
|
||||
for index in indexes:
|
||||
print(data_engine[index])
|
||||
expected_data = {
|
||||
"messages": [
|
||||
{
|
||||
"role": "user",
|
||||
"content": [
|
||||
{"type": "text", "value": original_data[index]["instruction"] + original_data[index]["input"]}
|
||||
],
|
||||
"loss_weight": 0.0,
|
||||
},
|
||||
{
|
||||
"role": "assistant",
|
||||
"content": [{"type": "text", "value": original_data[index]["output"]}],
|
||||
"loss_weight": 1.0,
|
||||
},
|
||||
]
|
||||
}
|
||||
assert data_engine[index] == {"_dataset_name": "tiny_dataset", **expected_data}
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
test_alpaca_converter(1)
|
Loading…
x
Reference in New Issue
Block a user