merge model part to the text stream

Former-commit-id: 838eb87a961894b072bf79a60bbda63516670d6f
This commit is contained in:
BUAADreamer 2024-04-25 08:20:41 +08:00
parent cb1c66a810
commit 4e032ff95e
5 changed files with 24 additions and 172 deletions

View File

@ -169,6 +169,10 @@ class ModelArguments:
default=False, default=False,
metadata={"help": "For debugging purposes, print the status of the parameters in the model."}, metadata={"help": "For debugging purposes, print the status of the parameters in the model."},
) )
use_mllm: bool = field(
default=False,
metadata={"help": "Whether use Multimodal LLM."},
)
def __post_init__(self): def __post_init__(self):
self.compute_dtype = None self.compute_dtype = None

View File

@ -1,10 +1,9 @@
from .loader import load_config, load_model, load_tokenizer, load_mm_model from .loader import load_config, load_model, load_tokenizer, load_processor
from .utils.misc import find_all_linear_modules, load_valuehead_params from .utils.misc import find_all_linear_modules, load_valuehead_params
__all__ = [ __all__ = [
"load_config", "load_config",
"load_model", "load_model",
"load_mm_model",
"load_tokenizer", "load_tokenizer",
"load_processor", "load_processor",
"load_valuehead_params", "load_valuehead_params",

View File

@ -1,4 +1,4 @@
from typing import TYPE_CHECKING from typing import TYPE_CHECKING, Union
import torch import torch
from peft import LoraConfig, LoraModel, PeftModel, TaskType, get_peft_model from peft import LoraConfig, LoraModel, PeftModel, TaskType, get_peft_model
@ -21,11 +21,11 @@ logger = get_logger(__name__)
def init_adapter( def init_adapter(
config: "PretrainedConfig", config: "PretrainedConfig",
model: "PreTrainedModel", model: Union["PreTrainedModel","AutoModelForVision2Seq"],
model_args: "ModelArguments", model_args: "ModelArguments",
finetuning_args: "FinetuningArguments", finetuning_args: "FinetuningArguments",
is_trainable: bool, is_trainable: bool,
) -> "PreTrainedModel": ) -> Union["PreTrainedModel","AutoModelForVision2Seq"]:
r""" r"""
Initializes the adapters. Initializes the adapters.
@ -195,103 +195,4 @@ def init_adapter(
if model_args.adapter_name_or_path is not None: if model_args.adapter_name_or_path is not None:
logger.info("Loaded adapter(s): {}".format(",".join(model_args.adapter_name_or_path))) logger.info("Loaded adapter(s): {}".format(",".join(model_args.adapter_name_or_path)))
return model return model
def init_mm_adapter(
model: "AutoModelForVision2Seq", model_args: "ModelArguments",
finetuning_args: "FinetuningArguments",
is_trainable: bool,
use_clm=True,
) -> "AutoModelForVision2Seq":
if finetuning_args.finetuning_type == "lora":
logger.info("Fine-tuning method: {}".format("DoRA" if finetuning_args.use_dora else "LoRA"))
adapter_to_resume = None
if model_args.adapter_name_or_path is not None:
is_mergeable = True
if getattr(model, "quantization_method", None): # merge lora in quantized model is unstable
assert len(model_args.adapter_name_or_path) == 1, "Quantized model only accepts a single adapter."
is_mergeable = False
if is_deepspeed_zero3_enabled():
assert len(model_args.adapter_name_or_path) == 1, "Cannot use multiple adapters in DeepSpeed ZeRO-3."
is_mergeable = False
if (is_trainable and not finetuning_args.create_new_adapter) or (not is_mergeable):
adapter_to_merge = model_args.adapter_name_or_path[:-1]
adapter_to_resume = model_args.adapter_name_or_path[-1]
else:
adapter_to_merge = model_args.adapter_name_or_path
for adapter in adapter_to_merge:
model: "LoraModel" = PeftModel.from_pretrained(
model, adapter, offload_folder=model_args.offload_folder
)
model = model.merge_and_unload()
if len(adapter_to_merge) > 0:
logger.info("Merged {} adapter(s).".format(len(adapter_to_merge)))
if adapter_to_resume is not None: # resume lora training
model = PeftModel.from_pretrained(
model, adapter_to_resume, is_trainable=is_trainable, offload_folder=model_args.offload_folder
)
if is_trainable and adapter_to_resume is None: # create new lora weights while training
if len(finetuning_args.lora_target) == 1 and finetuning_args.lora_target[0] == "all":
target_modules = find_all_linear_modules(model)
else:
target_modules = finetuning_args.lora_target
if finetuning_args.use_llama_pro:
target_modules = find_expanded_modules(model, target_modules, finetuning_args.num_layer_trainable)
if (
finetuning_args.use_dora
and getattr(model, "quantization_method", None) is not None
and getattr(model, "quantization_method", None) != QuantizationMethod.BITS_AND_BYTES
):
raise ValueError("DoRA is not compatible with PTQ-quantized models.")
peft_kwargs = {
"r": finetuning_args.lora_rank,
"target_modules": target_modules,
"lora_alpha": finetuning_args.lora_alpha,
"lora_dropout": finetuning_args.lora_dropout,
"use_rslora": finetuning_args.use_rslora,
"modules_to_save": finetuning_args.additional_target,
}
if model_args.use_unsloth:
from unsloth import FastLanguageModel # type: ignore
unsloth_peft_kwargs = {
"model": model,
"max_seq_length": model_args.model_max_length,
"use_gradient_checkpointing": "unsloth",
}
model = FastLanguageModel.get_peft_model(**peft_kwargs, **unsloth_peft_kwargs)
else:
if use_clm:
lora_config = LoraConfig(
task_type=TaskType.CAUSAL_LM,
inference_mode=False,
use_dora=finetuning_args.use_dora,
**peft_kwargs,
)
else:
lora_config = LoraConfig(
inference_mode=False,
use_dora=finetuning_args.use_dora,
**peft_kwargs,
)
model = get_peft_model(model, lora_config)
if (not finetuning_args.pure_bf16) and (not finetuning_args.use_badam):
for param in filter(lambda p: p.requires_grad, model.parameters()):
param.data = param.data.to(torch.float32)
if model_args.adapter_name_or_path is not None:
logger.info("Loaded adapter(s): {}".format(",".join(model_args.adapter_name_or_path)))
return model

View File

@ -1,11 +1,11 @@
from typing import TYPE_CHECKING, Any, Dict from typing import TYPE_CHECKING, Any, Dict, Union
from transformers import AutoConfig, AutoModelForCausalLM, AutoTokenizer, AutoProcessor, AutoModelForVision2Seq from transformers import AutoConfig, AutoModelForCausalLM, AutoTokenizer, AutoProcessor, AutoModelForVision2Seq
from trl import AutoModelForCausalLMWithValueHead from trl import AutoModelForCausalLMWithValueHead
from ..extras.logging import get_logger from ..extras.logging import get_logger
from ..extras.misc import count_parameters, try_download_model_from_ms from ..extras.misc import count_parameters, try_download_model_from_ms
from .adapter import init_adapter, init_mm_adapter from .adapter import init_adapter
from .patcher import patch_config, patch_model, patch_tokenizer, patch_valuehead_model from .patcher import patch_config, patch_model, patch_tokenizer, patch_valuehead_model
from .utils.misc import load_valuehead_params, register_autoclass from .utils.misc import load_valuehead_params, register_autoclass
from .utils.mod import convert_pretrained_model_to_mod, load_mod_pretrained_model from .utils.mod import convert_pretrained_model_to_mod, load_mod_pretrained_model
@ -106,12 +106,12 @@ def load_config(model_args: "ModelArguments") -> "PretrainedConfig":
def load_model( def load_model(
tokenizer: "PreTrainedTokenizer", tokenizer: "PreTrainedTokenizer",
model_args: "ModelArguments", model_args: "ModelArguments",
finetuning_args: "FinetuningArguments", finetuning_args: "FinetuningArguments",
is_trainable: bool = False, is_trainable: bool = False,
add_valuehead: bool = False, add_valuehead: bool = False,
) -> "PreTrainedModel": ) -> Union["PreTrainedModel", "AutoModelForVision2Seq"]:
r""" r"""
Loads pretrained model. Loads pretrained model.
""" """
@ -134,7 +134,10 @@ def load_model(
if model_args.mixture_of_depths == "load": if model_args.mixture_of_depths == "load":
model = load_mod_pretrained_model(**init_kwargs) model = load_mod_pretrained_model(**init_kwargs)
else: else:
model = AutoModelForCausalLM.from_pretrained(**init_kwargs) if model_args.use_mllm:
model = AutoModelForVision2Seq.from_pretrained(**init_kwargs)
else:
model = AutoModelForCausalLM.from_pretrained(**init_kwargs)
if model_args.mixture_of_depths == "convert": if model_args.mixture_of_depths == "convert":
model = convert_pretrained_model_to_mod(model, config, model_args) model = convert_pretrained_model_to_mod(model, config, model_args)
@ -182,56 +185,4 @@ def load_model(
) )
) )
return model return model
def load_mm_model(
processor: "AutoProcessor",
model_args: "ModelArguments",
finetuning_args: "FinetuningArguments",
is_trainable: bool = False,
add_valuehead: bool = False,
use_clm=True,
) -> "AutoModelForVision2Seq":
r"""
Loads pretrained model. Must after load_tokenizer.
"""
tokenizer = processor.tokenizer
init_kwargs = _get_init_kwargs(model_args)
config = AutoConfig.from_pretrained(model_args.model_name_or_path, **init_kwargs)
patch_config(config, tokenizer, model_args, init_kwargs, is_trainable)
model = None
if model is None:
init_kwargs["config"] = config
init_kwargs["pretrained_model_name_or_path"] = model_args.model_name_or_path
model: "AutoModelForVision2Seq" = AutoModelForVision2Seq.from_pretrained(**init_kwargs)
patch_model(model, tokenizer, model_args, is_trainable)
register_autoclass(config, model, tokenizer)
model = init_mm_adapter(model, model_args, finetuning_args, is_trainable, use_clm)
if not is_trainable:
model.requires_grad_(False)
model.eval()
else:
model.train()
trainable_params, all_param = count_parameters(model)
if is_trainable:
param_stats = "trainable params: {:d} || all params: {:d} || trainable%: {:.4f}".format(
trainable_params, all_param, 100 * trainable_params / all_param
)
else:
param_stats = "all params: {:d}".format(all_param)
logger.info(param_stats)
if model_args.print_param_status:
for name, param in model.named_parameters():
print(
"name: {}, dtype: {}, device: {}, trainable: {}".format(
name, param.dtype, param.device, param.requires_grad
)
)
return model

View File

@ -4,7 +4,7 @@ from typing import TYPE_CHECKING, List, Optional
from ...data import split_dataset, get_mm_dataset from ...data import split_dataset, get_mm_dataset
from ...extras.misc import get_logits_processor from ...extras.misc import get_logits_processor
from ...extras.ploting import plot_loss from ...extras.ploting import plot_loss
from ...model import load_tokenizer, load_processor, load_mm_model from ...model import load_tokenizer, load_processor, load_model
from ..utils import create_modelcard_and_push from ..utils import create_modelcard_and_push
from .metric import ComputeMetrics from .metric import ComputeMetrics
from .trainer import CustomSeq2SeqTrainer from .trainer import CustomSeq2SeqTrainer
@ -29,10 +29,7 @@ def run_sft_mm(
CHAT_TEMPLATE = """{% if not add_generation_prompt is defined %}{% set add_generation_prompt = false %}{% endif %}A chat between a curious user and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the user's questions. {% for message in messages %}{% if message['role'] == 'user' %}USER: {% else %}ASSISTANT: {% endif %}{% for item in message['content'] %}{% if item['type'] == 'text' %}{{ item['text'] }}{% elif item['type'] == 'image' %}<image>{% endif %}{% endfor %}{% if message['role'] == 'user' %} {% else %}{{eos_token}}{% endif %}{% endfor %}{% if add_generation_prompt %}ASSISTANT: {% endif %}""" CHAT_TEMPLATE = """{% if not add_generation_prompt is defined %}{% set add_generation_prompt = false %}{% endif %}A chat between a curious user and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the user's questions. {% for message in messages %}{% if message['role'] == 'user' %}USER: {% else %}ASSISTANT: {% endif %}{% for item in message['content'] %}{% if item['type'] == 'text' %}{{ item['text'] }}{% elif item['type'] == 'image' %}<image>{% endif %}{% endfor %}{% if message['role'] == 'user' %} {% else %}{{eos_token}}{% endif %}{% endfor %}{% if add_generation_prompt %}ASSISTANT: {% endif %}"""
tokenizer.chat_template = CHAT_TEMPLATE tokenizer.chat_template = CHAT_TEMPLATE
processor.tokenizer = tokenizer processor.tokenizer = tokenizer
use_clm = True model = load_model(processor.tokenizer, model_args, finetuning_args, training_args.do_train)
if "blip" in model_args.model_name_or_path:
use_clm = False
model = load_mm_model(processor, model_args, finetuning_args, training_args.do_train, use_clm=use_clm)
dataset = get_mm_dataset(processor, model_args, data_args, training_args, stage="sft") dataset = get_mm_dataset(processor, model_args, data_args, training_args, stage="sft")
if getattr(model, "is_quantized", False) and not training_args.do_train: if getattr(model, "is_quantized", False) and not training_args.do_train:
setattr(model, "_hf_peft_config_loaded", True) # hack here: make model compatible with prediction setattr(model, "_hf_peft_config_loaded", True) # hack here: make model compatible with prediction