add multimodal LLM BLIP-2 and InstructBLIP

This commit is contained in:
BUAADreamer
2024-04-23 18:45:43 +08:00
parent 5722ada12b
commit 4dcb11eab7
18 changed files with 4982 additions and 39 deletions

View File

@@ -1,24 +1,25 @@
from typing import TYPE_CHECKING
from typing import TYPE_CHECKING, Union
import torch
from peft import LoraConfig, LoraModel, PeftModel, TaskType, get_peft_model
from transformers import AutoModelForVision2Seq
from transformers.integrations import is_deepspeed_zero3_enabled
from ..extras.logging import get_logger
from .utils import QuantizationMethod, find_all_linear_modules, find_expanded_modules
if TYPE_CHECKING:
from transformers.modeling_utils import PreTrainedModel
from transformers.modeling_utils import PreTrainedModel, AutoModelForVision2Seq
from ..hparams import FinetuningArguments, ModelArguments
logger = get_logger(__name__)
def init_adapter(
model: "PreTrainedModel", model_args: "ModelArguments", finetuning_args: "FinetuningArguments", is_trainable: bool
model: "PreTrainedModel", model_args: "ModelArguments",
finetuning_args: "FinetuningArguments",
is_trainable: bool
) -> "PreTrainedModel":
r"""
Initializes the adapters.
@@ -43,9 +44,9 @@ def init_adapter(
if finetuning_args.finetuning_type == "freeze" and is_trainable:
logger.info("Fine-tuning method: Freeze")
num_layers = (
getattr(model.config, "num_hidden_layers", None)
or getattr(model.config, "num_layers", None)
or getattr(model.config, "n_layer", None)
getattr(model.config, "num_hidden_layers", None)
or getattr(model.config, "num_layers", None)
or getattr(model.config, "n_layer", None)
)
if not num_layers:
raise ValueError("Current model does not support freeze tuning.")
@@ -135,9 +136,9 @@ def init_adapter(
target_modules = find_expanded_modules(model, target_modules, finetuning_args.num_layer_trainable)
if (
finetuning_args.use_dora
and getattr(model, "quantization_method", None) is not None
and getattr(model, "quantization_method", None) != QuantizationMethod.BITS_AND_BYTES
finetuning_args.use_dora
and getattr(model, "quantization_method", None) is not None
and getattr(model, "quantization_method", None) != QuantizationMethod.BITS_AND_BYTES
):
raise ValueError("DoRA is not compatible with PTQ-quantized models.")
@@ -176,3 +177,94 @@ def init_adapter(
logger.info("Loaded adapter(s): {}".format(",".join(model_args.adapter_name_or_path)))
return model
def init_mm_adapter(
model: "AutoModelForVision2Seq", model_args: "ModelArguments",
finetuning_args: "FinetuningArguments",
is_trainable: bool
) -> "AutoModelForVision2Seq":
if finetuning_args.finetuning_type == "lora":
logger.info("Fine-tuning method: {}".format("DoRA" if finetuning_args.use_dora else "LoRA"))
adapter_to_resume = None
if model_args.adapter_name_or_path is not None:
is_mergeable = True
if getattr(model, "quantization_method", None): # merge lora in quantized model is unstable
assert len(model_args.adapter_name_or_path) == 1, "Quantized model only accepts a single adapter."
is_mergeable = False
if is_deepspeed_zero3_enabled():
assert len(model_args.adapter_name_or_path) == 1, "Cannot use multiple adapters in DeepSpeed ZeRO-3."
is_mergeable = False
if (is_trainable and not finetuning_args.create_new_adapter) or (not is_mergeable):
adapter_to_merge = model_args.adapter_name_or_path[:-1]
adapter_to_resume = model_args.adapter_name_or_path[-1]
else:
adapter_to_merge = model_args.adapter_name_or_path
for adapter in adapter_to_merge:
model: "LoraModel" = PeftModel.from_pretrained(
model, adapter, offload_folder=model_args.offload_folder
)
model = model.merge_and_unload()
if len(adapter_to_merge) > 0:
logger.info("Merged {} adapter(s).".format(len(adapter_to_merge)))
if adapter_to_resume is not None: # resume lora training
model = PeftModel.from_pretrained(
model, adapter_to_resume, is_trainable=is_trainable, offload_folder=model_args.offload_folder
)
if is_trainable and adapter_to_resume is None: # create new lora weights while training
if len(finetuning_args.lora_target) == 1 and finetuning_args.lora_target[0] == "all":
target_modules = find_all_linear_modules(model)
else:
target_modules = finetuning_args.lora_target
if finetuning_args.use_llama_pro:
target_modules = find_expanded_modules(model, target_modules, finetuning_args.num_layer_trainable)
if (
finetuning_args.use_dora
and getattr(model, "quantization_method", None) is not None
and getattr(model, "quantization_method", None) != QuantizationMethod.BITS_AND_BYTES
):
raise ValueError("DoRA is not compatible with PTQ-quantized models.")
peft_kwargs = {
"r": finetuning_args.lora_rank,
"target_modules": target_modules,
"lora_alpha": finetuning_args.lora_alpha,
"lora_dropout": finetuning_args.lora_dropout,
"use_rslora": finetuning_args.use_rslora,
"modules_to_save": finetuning_args.additional_target,
}
if model_args.use_unsloth:
from unsloth import FastLanguageModel # type: ignore
unsloth_peft_kwargs = {
"model": model,
"max_seq_length": model_args.model_max_length,
"use_gradient_checkpointing": "unsloth",
}
model = FastLanguageModel.get_peft_model(**peft_kwargs, **unsloth_peft_kwargs)
else:
lora_config = LoraConfig(
# task_type=TaskType.CAUSAL_LM,
inference_mode=False,
use_dora=finetuning_args.use_dora,
**peft_kwargs,
)
model = get_peft_model(model, lora_config)
if (not finetuning_args.pure_bf16) and (not finetuning_args.use_badam):
for param in filter(lambda p: p.requires_grad, model.parameters()):
param.data = param.data.to(torch.float32)
if model_args.adapter_name_or_path is not None:
logger.info("Loaded adapter(s): {}".format(",".join(model_args.adapter_name_or_path)))
return model