mirror of
https://github.com/hiyouga/LLaMA-Factory.git
synced 2025-12-16 11:50:35 +08:00
lazy image load
This commit is contained in:
@@ -41,13 +41,14 @@ def run_dpo(
|
||||
):
|
||||
tokenizer_module = load_tokenizer(model_args)
|
||||
tokenizer = tokenizer_module["tokenizer"]
|
||||
dataset_module = get_dataset(model_args, data_args, training_args, stage="rm", **tokenizer_module)
|
||||
dataset_module, template = get_dataset(model_args, data_args, training_args, stage="rm", **tokenizer_module)
|
||||
model = load_model(tokenizer, model_args, finetuning_args, training_args.do_train)
|
||||
|
||||
data_collator = PairwiseDataCollatorWithPadding(
|
||||
tokenizer=tokenizer,
|
||||
template=template,
|
||||
pad_to_multiple_of=8,
|
||||
label_pad_token_id=IGNORE_INDEX if data_args.ignore_pad_token_for_loss else tokenizer.pad_token_id,
|
||||
**tokenizer_module,
|
||||
)
|
||||
|
||||
# Create reference model
|
||||
@@ -60,7 +61,7 @@ def run_dpo(
|
||||
ref_model = None
|
||||
|
||||
# Update arguments
|
||||
training_args.remove_unused_columns = False # important for pairwise dataset
|
||||
training_args.remove_unused_columns = False # important for multimodal and pairwise dataset
|
||||
|
||||
# Initialize our Trainer
|
||||
trainer = CustomDPOTrainer(
|
||||
|
||||
@@ -41,13 +41,14 @@ def run_kto(
|
||||
):
|
||||
tokenizer_module = load_tokenizer(model_args)
|
||||
tokenizer = tokenizer_module["tokenizer"]
|
||||
dataset_module = get_dataset(model_args, data_args, training_args, stage="kto", **tokenizer_module)
|
||||
dataset_module, template = get_dataset(model_args, data_args, training_args, stage="kto", **tokenizer_module)
|
||||
model = load_model(tokenizer, model_args, finetuning_args, training_args.do_train)
|
||||
|
||||
data_collator = KTODataCollatorWithPadding(
|
||||
tokenizer=tokenizer,
|
||||
template=template,
|
||||
pad_to_multiple_of=8,
|
||||
label_pad_token_id=IGNORE_INDEX if data_args.ignore_pad_token_for_loss else tokenizer.pad_token_id,
|
||||
**tokenizer_module,
|
||||
)
|
||||
|
||||
# Create reference model
|
||||
@@ -57,7 +58,7 @@ def run_kto(
|
||||
ref_model = create_ref_model(model_args, finetuning_args)
|
||||
|
||||
# Update arguments
|
||||
training_args.remove_unused_columns = False # important for pairwise dataset
|
||||
training_args.remove_unused_columns = False # important for multimodal and pairwise dataset
|
||||
|
||||
# Initialize our Trainer
|
||||
trainer = CustomKTOTrainer(
|
||||
|
||||
@@ -41,11 +41,11 @@ def run_ppo(
|
||||
):
|
||||
tokenizer_module = load_tokenizer(model_args)
|
||||
tokenizer = tokenizer_module["tokenizer"]
|
||||
dataset_module = get_dataset(model_args, data_args, training_args, stage="ppo", **tokenizer_module)
|
||||
dataset_module, template = get_dataset(model_args, data_args, training_args, stage="ppo", **tokenizer_module)
|
||||
model = load_model(tokenizer, model_args, finetuning_args, training_args.do_train, add_valuehead=True)
|
||||
|
||||
tokenizer.padding_side = "left" # use left-padding in generation while using right-padding in training
|
||||
data_collator = MultiModalDataCollatorForSeq2Seq(tokenizer=tokenizer)
|
||||
data_collator = MultiModalDataCollatorForSeq2Seq(template=template, **tokenizer_module)
|
||||
|
||||
# Create reference model and reward model
|
||||
ref_model = create_ref_model(model_args, finetuning_args, add_valuehead=True)
|
||||
|
||||
@@ -42,7 +42,7 @@ def run_pt(
|
||||
):
|
||||
tokenizer_module = load_tokenizer(model_args)
|
||||
tokenizer = tokenizer_module["tokenizer"]
|
||||
dataset_module = get_dataset(model_args, data_args, training_args, stage="pt", **tokenizer_module)
|
||||
dataset_module, _ = get_dataset(model_args, data_args, training_args, stage="pt", **tokenizer_module)
|
||||
model = load_model(tokenizer, model_args, finetuning_args, training_args.do_train)
|
||||
data_collator = DataCollatorForLanguageModeling(tokenizer=tokenizer, mlm=False)
|
||||
|
||||
|
||||
@@ -41,12 +41,12 @@ def run_rm(
|
||||
):
|
||||
tokenizer_module = load_tokenizer(model_args)
|
||||
tokenizer = tokenizer_module["tokenizer"]
|
||||
dataset_module = get_dataset(model_args, data_args, training_args, stage="rm", **tokenizer_module)
|
||||
dataset_module, template = get_dataset(model_args, data_args, training_args, stage="rm", **tokenizer_module)
|
||||
model = load_model(tokenizer, model_args, finetuning_args, training_args.do_train, add_valuehead=True)
|
||||
data_collator = PairwiseDataCollatorWithPadding(tokenizer, pad_to_multiple_of=8)
|
||||
data_collator = PairwiseDataCollatorWithPadding(template=template, pad_to_multiple_of=8, **tokenizer_module)
|
||||
|
||||
# Update arguments
|
||||
training_args.remove_unused_columns = False # important for pairwise dataset
|
||||
training_args.remove_unused_columns = False # important for multimodal and pairwise dataset
|
||||
|
||||
# Initialize our Trainer
|
||||
trainer = PairwiseTrainer(
|
||||
|
||||
@@ -43,24 +43,26 @@ def run_sft(
|
||||
):
|
||||
tokenizer_module = load_tokenizer(model_args)
|
||||
tokenizer = tokenizer_module["tokenizer"]
|
||||
dataset_module = get_dataset(model_args, data_args, training_args, stage="sft", **tokenizer_module)
|
||||
dataset_module, template = get_dataset(model_args, data_args, training_args, stage="sft", **tokenizer_module)
|
||||
model = load_model(tokenizer, model_args, finetuning_args, training_args.do_train)
|
||||
|
||||
if getattr(model, "is_quantized", False) and not training_args.do_train:
|
||||
setattr(model, "_hf_peft_config_loaded", True) # hack here: make model compatible with prediction
|
||||
|
||||
data_collator = SFTDataCollatorWith4DAttentionMask(
|
||||
tokenizer=tokenizer,
|
||||
template=template,
|
||||
pad_to_multiple_of=8 if training_args.do_train else None, # for shift short attention
|
||||
label_pad_token_id=IGNORE_INDEX if data_args.ignore_pad_token_for_loss else tokenizer.pad_token_id,
|
||||
block_diag_attn=model_args.block_diag_attn,
|
||||
attn_implementation=getattr(model.config, "_attn_implementation", None),
|
||||
compute_dtype=model_args.compute_dtype,
|
||||
**tokenizer_module,
|
||||
)
|
||||
|
||||
# Override the decoding parameters of Seq2SeqTrainer
|
||||
training_args.generation_max_length = training_args.generation_max_length or data_args.cutoff_len
|
||||
training_args.generation_num_beams = data_args.eval_num_beams or training_args.generation_num_beams
|
||||
training_args.remove_unused_columns = False # important for multimodal and pairwise dataset
|
||||
|
||||
# Metric utils
|
||||
metric_module = {}
|
||||
|
||||
@@ -105,7 +105,7 @@ def load_reference_model(
|
||||
def load_train_dataset(**kwargs) -> "Dataset":
|
||||
model_args, data_args, training_args, _, _ = get_train_args(kwargs)
|
||||
tokenizer_module = load_tokenizer(model_args)
|
||||
dataset_module = get_dataset(model_args, data_args, training_args, stage=kwargs["stage"], **tokenizer_module)
|
||||
dataset_module, _ = get_dataset(model_args, data_args, training_args, stage=kwargs["stage"], **tokenizer_module)
|
||||
return dataset_module["train_dataset"]
|
||||
|
||||
|
||||
|
||||
Reference in New Issue
Block a user