mirror of
https://github.com/hiyouga/LLaMA-Factory.git
synced 2025-12-16 20:00:36 +08:00
lazy image load
This commit is contained in:
@@ -21,10 +21,10 @@ from .processor_utils import infer_seqlen
|
||||
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from PIL.Image import Image
|
||||
from transformers import PreTrainedTokenizer, ProcessorMixin
|
||||
|
||||
from ...hparams import DataArguments
|
||||
from ..mm_plugin import ImageInput
|
||||
from ..template import Template
|
||||
|
||||
|
||||
@@ -36,12 +36,12 @@ def _encode_unsupervised_example(
|
||||
response: Sequence[Dict[str, str]],
|
||||
system: Optional[str],
|
||||
tools: Optional[str],
|
||||
images: Sequence["Image"],
|
||||
images: Sequence["ImageInput"],
|
||||
template: "Template",
|
||||
tokenizer: "PreTrainedTokenizer",
|
||||
processor: Optional["ProcessorMixin"],
|
||||
cutoff_len: int,
|
||||
) -> Tuple[List[int], List[int], Dict[str, Any]]:
|
||||
) -> Tuple[List[int], List[int]]:
|
||||
if len(response) == 1:
|
||||
messages = prompt + response
|
||||
else:
|
||||
@@ -56,10 +56,7 @@ def _encode_unsupervised_example(
|
||||
source_len, target_len = infer_seqlen(len(input_ids), len(labels), cutoff_len)
|
||||
input_ids = input_ids[:source_len]
|
||||
labels = labels[:target_len]
|
||||
extra_inputs = template.mm_plugin.get_mm_inputs(
|
||||
images=images, feature_seqlens={"token_type_ids": len(input_ids)}, processor=processor
|
||||
)
|
||||
return input_ids, labels, extra_inputs
|
||||
return input_ids, labels
|
||||
|
||||
|
||||
def preprocess_unsupervised_dataset(
|
||||
@@ -71,17 +68,17 @@ def preprocess_unsupervised_dataset(
|
||||
) -> Dict[str, List[Any]]:
|
||||
# build inputs with format `<bos> X` and labels with format `Y <eos>`
|
||||
model_inputs = defaultdict(list)
|
||||
for i in range(len(examples["prompt"])):
|
||||
if len(examples["prompt"][i]) % 2 != 1:
|
||||
logger.warning("Dropped invalid example: {}".format(examples["prompt"][i] + examples["response"][i]))
|
||||
for i in range(len(examples["_prompt"])):
|
||||
if len(examples["_prompt"][i]) % 2 != 1:
|
||||
logger.warning("Dropped invalid example: {}".format(examples["_prompt"][i] + examples["_response"][i]))
|
||||
continue
|
||||
|
||||
input_ids, labels, extra_inputs = _encode_unsupervised_example(
|
||||
prompt=examples["prompt"][i],
|
||||
response=examples["response"][i],
|
||||
system=examples["system"][i],
|
||||
tools=examples["tools"][i],
|
||||
images=examples["images"][i],
|
||||
input_ids, labels = _encode_unsupervised_example(
|
||||
prompt=examples["_prompt"][i],
|
||||
response=examples["_response"][i],
|
||||
system=examples["_system"][i],
|
||||
tools=examples["_tools"][i],
|
||||
images=examples["_images"][i] or [],
|
||||
template=template,
|
||||
tokenizer=tokenizer,
|
||||
processor=processor,
|
||||
@@ -90,8 +87,7 @@ def preprocess_unsupervised_dataset(
|
||||
model_inputs["input_ids"].append(input_ids)
|
||||
model_inputs["attention_mask"].append([1] * len(input_ids))
|
||||
model_inputs["labels"].append(labels)
|
||||
for key, value in extra_inputs.items():
|
||||
model_inputs[key].append(value)
|
||||
model_inputs["images"].append(examples["_images"][i])
|
||||
|
||||
return model_inputs
|
||||
|
||||
|
||||
Reference in New Issue
Block a user