mirror of
https://github.com/hiyouga/LLaMA-Factory.git
synced 2025-12-15 03:10:35 +08:00
disentangle model from tuner and rename modules
This commit is contained in:
75
src/llmtuner/train/rm/workflow.py
Normal file
75
src/llmtuner/train/rm/workflow.py
Normal file
@@ -0,0 +1,75 @@
|
||||
# Inspired by: https://github.com/CarperAI/trlx/blob/main/examples/summarize_rlhf/reward_model/train_reward_model_gptj.py
|
||||
|
||||
from typing import TYPE_CHECKING, Optional, List
|
||||
from transformers import Seq2SeqTrainingArguments
|
||||
|
||||
from llmtuner.data import get_dataset, preprocess_dataset, split_dataset
|
||||
from llmtuner.extras.callbacks import SavePeftModelCallback
|
||||
from llmtuner.extras.ploting import plot_loss
|
||||
from llmtuner.model import generate_model_card, load_model_and_tokenizer
|
||||
from llmtuner.train.rm.collator import PairwiseDataCollatorWithPadding
|
||||
from llmtuner.train.rm.metric import compute_accuracy
|
||||
from llmtuner.train.rm.trainer import PairwiseTrainer
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from transformers import TrainerCallback
|
||||
from llmtuner.hparams import ModelArguments, DataArguments, FinetuningArguments
|
||||
|
||||
|
||||
def run_rm(
|
||||
model_args: "ModelArguments",
|
||||
data_args: "DataArguments",
|
||||
training_args: "Seq2SeqTrainingArguments",
|
||||
finetuning_args: "FinetuningArguments",
|
||||
callbacks: Optional[List["TrainerCallback"]] = None
|
||||
):
|
||||
dataset = get_dataset(model_args, data_args)
|
||||
model, tokenizer = load_model_and_tokenizer(model_args, finetuning_args, training_args.do_train, stage="rm")
|
||||
dataset = preprocess_dataset(dataset, tokenizer, data_args, training_args, stage="rm")
|
||||
data_collator = PairwiseDataCollatorWithPadding(tokenizer, pad_to_multiple_of=4)
|
||||
|
||||
# Update arguments
|
||||
training_args_dict = training_args.to_dict()
|
||||
training_args_dict.update(dict(remove_unused_columns=False)) # important for pairwise dataset
|
||||
training_args = Seq2SeqTrainingArguments(**training_args_dict)
|
||||
|
||||
# Initialize our Trainer
|
||||
trainer = PairwiseTrainer(
|
||||
model=model,
|
||||
args=training_args,
|
||||
tokenizer=tokenizer,
|
||||
data_collator=data_collator,
|
||||
callbacks=callbacks + [SavePeftModelCallback()],
|
||||
compute_metrics=compute_accuracy,
|
||||
**split_dataset(dataset, data_args, training_args)
|
||||
)
|
||||
|
||||
# Training
|
||||
if training_args.do_train:
|
||||
train_result = trainer.train()
|
||||
trainer.save_model()
|
||||
trainer.log_metrics("train", train_result.metrics)
|
||||
trainer.save_metrics("train", train_result.metrics)
|
||||
trainer.save_state()
|
||||
if trainer.is_world_process_zero() and model_args.plot_loss:
|
||||
plot_loss(training_args.output_dir, keys=["loss", "eval_loss"])
|
||||
|
||||
# Evaluation
|
||||
if training_args.do_eval:
|
||||
metrics = trainer.evaluate(metric_key_prefix="eval")
|
||||
trainer.log_metrics("eval", metrics)
|
||||
trainer.save_metrics("eval", metrics)
|
||||
|
||||
# Predict
|
||||
if training_args.do_predict:
|
||||
predict_results = trainer.predict(dataset, metric_key_prefix="predict")
|
||||
trainer.log_metrics("predict", predict_results.metrics)
|
||||
trainer.save_metrics("predict", predict_results.metrics)
|
||||
trainer.save_predictions(predict_results)
|
||||
|
||||
# Create model card
|
||||
if training_args.do_train:
|
||||
if training_args.push_to_hub:
|
||||
trainer.push_to_hub(**generate_model_card(model_args, data_args, finetuning_args))
|
||||
else:
|
||||
trainer.create_model_card(**generate_model_card(model_args, data_args, finetuning_args))
|
||||
Reference in New Issue
Block a user